The morphology and evolutionary significance of the ciliary fields and musculature among marine bryozoan larvae.

J Morphol

Smithsonian Marine Station, Fort Pierce, Florida 34949, USA.

Published: March 2008

Despite the embryological and anatomical disparities present among lophotrochozoan phyla, there are morphological similarities in the cellular arrangements of ciliated cells used for propulsion among the nonfeeding larval forms of kamptozoans, nemerteans, annelids, mollusks, and bryozoans. Evaluating whether these similarities are the result of convergent selective pressures or a shared (deep) evolutionary history is hindered by the paucity of detailed cellular information from multiple systematic groups from lesser-known, and perhaps, basal evolutionary phyla such as the Bryozoa. Here, I compare the ciliary fields and musculature among the major morphological grades of marine bryozoan larvae using light microscopy, SEM, and confocal imaging techniques. Sampling effort focused on six species from systematic groups with few published accounts, but an additional four well-known species were also reevaluated. Review of the main larval types among species of bryozoans and these new data show that, within select systematic groups of marine bryozoans, there is some conservation of the cellular arrangement of ciliary fields and larval musculature. However, there is much more morphological diversity in these structures than previously documented, especially among nonfeeding ctenostome larval types. This structural and functional diversification reflects species differences in the orientation of the apical disc during swimming and crawling behaviors, modification of the presumptive juvenile tissues, elongation of larval forms in the aboral-oral axis, maximizing the surface area of cell types with propulsive cilia, and the simplification of ciliary fields and musculature within particular lineages due to evolutionary loss. Considering the embryological origins and functional plasticity of ciliated cells within bryozoan larvae, it is probable that the morphological similarities shared between the coronal cells of bryozoan larvae and the prototrochal cells of trochozoans are the result of convergent functional solutions to swimming in the plankton. However, this does not rule out cell specification pathways shared by more closely related spiralian phyla. Overall, among the morphological grades of larval bryozoans, the structural variation and arrangement of the main cell groups responsible for ciliary propulsion have been evolutionarily decoupled from the more divergent modifications of larval musculature. The structure of larval ciliary fields reflects the functional demands of swimming and substrate exploration behaviors before metamorphosis, but this is in contrast to the morphology of larval musculature and presumptive juvenile tissues that are linked to macroevolutionary differences in morphogenetic movements during metamorphosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.10592DOI Listing

Publication Analysis

Top Keywords

ciliary fields
20
bryozoan larvae
16
fields musculature
12
systematic groups
12
larval musculature
12
larval
9
marine bryozoan
8
phyla morphological
8
morphological similarities
8
ciliated cells
8

Similar Publications

Article Synopsis
  • Biomagnetic fluid dynamics (BFD) focuses on the behavior of bio-fluids, like blood, impacted by magnetic fields, which is important for medical applications such as targeted medication delivery and tumor treatment.
  • This study examines blood flow dynamics using trihybrid nanoparticles in a catheterized artery, factoring in various electromagnetic influences and propulsion mechanisms.
  • Key findings include that increasing Hall and ion-slip parameters boosts blood velocity, modifies entropy generation, and shows that modified hybrid nano-blood forms smaller, more manageable clumps compared to pure blood, with longer cilia enhancing recovery of these clumps.
View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

During a field survey of parasitic ciliates diversity in South Korea, a scuticociliate was found in a water sample collected during scuba diving. At first glance, the species looks similar to members of the genus Paranophrys especially P. magna but they differ mainly in the body size and the number of somatic kineties.

View Article and Find Full Text PDF

Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.

View Article and Find Full Text PDF

Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!