Francisella tularensis (FT) has been classified by the CDC as a category A pathogen because of its high virulence and the high mortality rate associated with infection via the aerosol route. Because there is no licensed vaccine available for FT, development of prophylactic and therapeutic regimens for the prevention/treatment of infection is a high priority. In this report, heat-killed FT live vaccine strain (HKLVS) was employed as a vaccine immunogen, either alone or in combination with an adjuvant, and was found to elicit protective immunity against high-dose FT live vaccine strain (FTLVS) challenge. FT-specific antibodies produced in response to immunization with HKLVS alone were subsequently found to completely protect naive mice against high-dose FT challenge in both infection-interference and passive immunization experiments. Additional passive immunization trials employing serum collected from mice immunized with a heat-killed preparation of an O-antigen-deficient transposon mutant of FTLVS (HKLVS-OAg(neg)) yielded similar results. These findings demonstrated that FT-specific antibodies alone can confer immunity against high-dose FTLVS challenge, and they reveal that antibody-mediated protection is not dependent upon production of LPS-specific antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200737620DOI Listing

Publication Analysis

Top Keywords

francisella tularensis
8
live vaccine
8
vaccine strain
8
immunity high-dose
8
ftlvs challenge
8
ft-specific antibodies
8
passive immunization
8
immunization
4
immunization heat-killed
4
heat-killed francisella
4

Similar Publications

Tularemia is a rare nationally notifiable zoonosis, caused by the tier-1 select agent Francisella tularensis, that has been reported from all U.S. states except Hawaii.

View Article and Find Full Text PDF

Unveiling the versatility of the thioredoxin framework: Insights from the structural examination of DsbA1.

Comput Struct Biotechnol J

December 2024

Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.

In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis.

View Article and Find Full Text PDF

in Wild Lagomorphs in Southern Spain's Mediterranean Ecosystems.

Animals (Basel)

November 2024

Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, 14014 Córdoba, Spain.

is a vector-borne zoonotic bacterium that causes tularemia, a disease of great importance for animal and public health. Although wild lagomorphs are considered one of the major reservoirs of this bacterium, information about the circulation of in European wild rabbit () and Iberian hare () populations in Europe is still very limited. In Spain, is present in northern central regions, with recurrent outbreaks occurring annually.

View Article and Find Full Text PDF

Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by , a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors.

View Article and Find Full Text PDF
Article Synopsis
  • - Human infections from a dangerous bacteria usually occur through contaminated sources like water and food, and the bacteria can survive in these environments for extended periods.
  • - A lab study demonstrated that this bacteria can remain viable in fresh water for 3 to 8 weeks at low temperatures, leading researchers to explore the genetic factors that support this persistence.
  • - The research identified a key gene, murein peptide ligase, which is essential for the bacteria’s survival in water and during stress, emphasizing the role of bacterial cell walls in adapting to various environmental challenges.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!