The study of animal foraging behaviour is of practical ecological importance, and exemplifies the wider scientific problem of optimizing search strategies. Lévy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails, such that clusters of short steps are connected by rare long steps. Lévy flights display fractal properties, have no typical scale, and occur in physical and chemical systems. An attempt to demonstrate their existence in a natural biological system presented evidence that wandering albatrosses perform Lévy flights when searching for prey on the ocean surface. This well known finding was followed by similar inferences about the search strategies of deer and bumblebees. These pioneering studies have triggered much theoretical work in physics (for example, refs 11, 12), as well as empirical ecological analyses regarding reindeer, microzooplankton, grey seals, spider monkeys and fishing boats. Here we analyse a new, high-resolution data set of wandering albatross flights, and find no evidence for Lévy flight behaviour. Instead we find that flight times are gamma distributed, with an exponential decay for the longest flights. We re-analyse the original albatross data using additional information, and conclude that the extremely long flights, essential for demonstrating Lévy flight behaviour, were spurious. Furthermore, we propose a widely applicable method to test for power-law distributions using likelihood and Akaike weights. We apply this to the four original deer and bumblebee data sets, finding that none exhibits evidence of Lévy flights, and that the original graphical approach is insufficient. Such a graphical approach has been adopted to conclude Lévy flight movement for other organisms, and to propose Lévy flight analysis as a potential real-time ecosystem monitoring tool. Our results question the strength of the empirical evidence for biological Lévy flights.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06199DOI Listing

Publication Analysis

Top Keywords

lévy flight
20
lévy flights
20
lévy
9
wandering albatrosses
8
search strategies
8
flights
8
evidence lévy
8
flight behaviour
8
graphical approach
8
flight
6

Similar Publications

Introduction: Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP.

View Article and Find Full Text PDF

Background: Batoids possess a unique body plan associated with a benthic lifestyle that includes dorsoventral compression and anteriorly expanded pectoral fins that fuse to the rostrum. The family Myliobatidae, including manta rays and their relatives, exhibit further modifications associated with invasion of the pelagic environment, and the evolution of underwater flight. Notably, the pectoral fins are split into two domains with independent functions that are optimized for feeding and oscillatory locomotion.

View Article and Find Full Text PDF

Heuristic-based vehicle arrangement for ro-ro ships.

Sci Rep

December 2024

Information Science and Engineering School, Northeastern University, Shenyang, 110819, Liaoning, China.

In this paper, a two-level search strategy fused with an improved no-fit polygon algorithm and improved bat algorithm is proposed to obtain the layout points of multiple vehicles. Additionally, a space-time scheduling strategy is proposed using the Improved D*Lite Algorithm (ID*Lite) and improved Bezier curve to generate the trajectories of individual vehicles. Furthermore, a conflict resolution strategy is introduced to address the collision conflict problem during multi-vehicle scheduling.

View Article and Find Full Text PDF

Improved aquila optimizer for swarm-based solutions to complex engineering problems.

Sci Rep

December 2024

Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11543, Riyadh, Saudi Arabia.

The traditional optimization approaches suffer from certain problems like getting stuck in local optima, low speed, susceptibility to local optima, and searching unknown search spaces, thus requiring reliance on single-based solutions. Herein, an Improved Aquila Optimizer (IAO) is proposed, which is a unique meta-heuristic optimization method motivated by the hunting behavior of Aquila. An improved version of Aquila optimizer seeks to increase effectiveness and productivity.

View Article and Find Full Text PDF

Path planning and engineering problems of 3D UAV based on adaptive coati optimization algorithm.

Sci Rep

December 2024

Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang, 550025, Guizhou, China.

In response to the challenges faced by the Coati Optimization Algorithm (COA), including imbalance between exploration and exploitation, slow convergence speed, susceptibility to local optima, and low convergence accuracy, this paper introduces an enhanced variant termed the Adaptive Coati Optimization Algorithm (ACOA). ACOA achieves a balanced exploration-exploitation trade-off through refined exploration strategies and developmental methodologies. It integrates chaos mapping to enhance randomness and global search capabilities and incorporates a dynamic antagonistic learning approach employing random protons to mitigate premature convergence, thereby enhancing algorithmic robustness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!