Streptomyces spp. produce a variety of valuable secondary metabolites, which are regulated in a spatio-temporal manner by a complex network of inter-connected gene products. Using a compilation of genome-scale temporal transcriptome data for the model organism, Streptomyces coelicolor, under different environmental and genetic perturbations, we have developed a supervised machine-learning method for operon prediction in this microorganism. We demonstrate that, using features dependent on transcriptome dynamics and genome sequence, a support vector machines (SVM)-based classification algorithm can accurately classify >90% of gene pairs in a set of known operons. Based on model predictions for the entire genome, we verified the co-transcription of more than 250 gene pairs by RT-PCR. These results vastly increase the database of known operons in S. coelicolor and provide valuable information for exploring gene function and regulation to harness the potential of this differentiating microorganism for synthesis of natural products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175336 | PMC |
http://dx.doi.org/10.1093/nar/gkm501 | DOI Listing |
Microbiol Spectr
December 2024
Finch Therapeutics, Somerville, Massachusetts, USA.
The gut microbiome plays a key role in bile acid (BA) metabolism, where a diversity of metabolic products contribute to human health and disease. In particular, Inflammatory Bowel Disease (IBD) is characterized by a low concentration of secondary bile acids (SBAs), whose transformation from primary bile acids (PBAs) is an essential function performed solely by gut bacteria. BA-transformation activity mediated by the bile acid inducible (bai) operon has been functionally characterized in the genus , and homologous bai gene sequences have been found in metagenome-assembled genomes (MAGs) belonging to other taxa in the human gut, but it is unclear which species of bai-carrying bacteria perform physiologically significant amounts of bile acid transformation in healthy and sick individuals.
View Article and Find Full Text PDFProc Biol Sci
December 2024
Department of Molecular Biology, Umeå University, Umeå, Sweden.
bioRxiv
November 2024
Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093.
bioRxiv
November 2024
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
is a Gram-positive anaerobic spore-forming bacterial pathogen of humans and animals. also produces type IV pili (T4P) and has two complete sets of T4P-associated genes, one of which has been shown to produce surface pili needed for cell adherence. One hypothesis about the role of the other set of T4P genes is that they could comprise a system analogous to the type II secretion systems (TTSS) found in Gram-negative bacteria, which is used to export folded proteins from the periplasm through the outer membrane to the extracellular environment.
View Article and Find Full Text PDFMicrob Ecol
November 2024
Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
Bacteria are typically isolated on rich media to maximise isolation success, removing them from their native evolutionary context. This eliminates selection pressures, enabling otherwise deleterious genomic events to accumulate. Here, we present a cautionary tale of these 'quiet mutations' which can persist unnoticed in bacterial culture lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!