The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1+/-0.2A and an off-rate of 0.2+/-0.1s(-1). These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reported for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.10.034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!