Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths.

Appl Spectrosc

National Institute of Standards and Technology, Chemical Science and Technology Laboratory, 100 Bureau Drive, Stop 8360, Gaithersburg, Maryland 20899-8360, USA.

Published: October 2007

The interpretation of Raman spectra of GaSb can be complicated by the presence of a so-called surface space-charge region (SSCR), resulting in an inhomogeneous near-surface Raman scattering environment. To fully interpret Raman spectra, it is important to have an understanding of the SSCR profile relative to the Raman probe depth. However, a priori determination of even the actual SSCR width is not always possible for GaSb under a wide range of doping levels. The primary objective of this report is to provide a convenient reference to aid in the determination of relative contributions to an observed GaSb Raman spectrum of SSCR scattering and bulk scattering for a range of excitation wavelengths, doping levels, and SSCR widths and types. Raman spectra of both n-type and p-type doped GaSb epilayers were obtained using 488 nm, 514.5 nm, 647.1 nm, and 752.55 nm excitation radiation. Both n-type and p-type doped GaSb epilayers were selected for investigation because these layers exhibit the two different SSCR types that are typically encountered with as-grown GaSb and related materials. A range of doping levels were examined for each doping type so as to examine the effects of a varying SSCR width on the observed spectra. A secondary objective of this report is to demonstrate the performance of a spectroscopic system based on 752.55 nm excitation that is sensitive to bulk carrier properties in n-type and p-type doped GaSb epilayers over a wide doping range, unlike visible-wavelength-based optical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370207782217789DOI Listing

Publication Analysis

Top Keywords

n-type p-type
16
raman spectra
12
doping levels
12
p-type doped
12
doped gasb
12
gasb epilayers
12
gasb
8
excitation wavelengths
8
sscr width
8
range doping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!