Features generated for computational splice-site prediction correspond to functional elements.

BMC Bioinformatics

Computer Science Department, University of Maryland, College Park, MD 20742, USA.

Published: October 2007

Background: Accurate selection of splice sites during the splicing of precursors to messenger RNA requires both relatively well-characterized signals at the splice sites and auxiliary signals in the adjacent exons and introns. We previously described a feature generation algorithm (FGA) that is capable of achieving high classification accuracy on human 3' splice sites. In this paper, we extend the splice-site prediction to 5' splice sites and explore the generated features for biologically meaningful splicing signals.

Results: We present examples from the observed features that correspond to known signals, both core signals (including the branch site and pyrimidine tract) and auxiliary signals (including GGG triplets and exon splicing enhancers). We present evidence that features identified by FGA include splicing signals not found by other methods.

Conclusion: Our generated features capture known biological signals in the expected sequence interval flanking splice sites. The method can be easily applied to other species and to similar classification problems, such as tissue-specific regulatory elements, polyadenylation sites, promoters, etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2241647PMC
http://dx.doi.org/10.1186/1471-2105-8-410DOI Listing

Publication Analysis

Top Keywords

splice sites
20
splice-site prediction
8
auxiliary signals
8
generated features
8
signals including
8
signals
7
sites
6
features
5
splice
5
features generated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!