Background: Apoptosis, one of the main types of programmed cell death, is regulated and performed by a complex protein network. Studies in model organisms, mostly in the nematode Caenorhabditis elegans, identified a relatively simple apoptotic network consisting of only a few proteins. However, analysis of several recently sequenced invertebrate genomes, ranging from the cnidarian sea anemone Nematostella vectensis, representing one of the morphologically simplest metazoans, to the deuterostomes sea urchin and amphioxus, contradicts the current paradigm of a simple ancestral network that expanded in vertebrates.
Results: Here we show that the apoptosome-forming CED-4/Apaf-1 protein, present in single copy in vertebrate, nematode, and insect genomes, had multiple paralogs in the cnidarian-bilaterian ancestor. Different members of this ancestral Apaf-1 family led to the extant proteins in nematodes/insects and in deuterostomes, explaining significant functional differences between proteins that until now were believed to be orthologous. Similarly, the evolution of the Bcl-2 and caspase protein families appears surprisingly complex and apparently included significant gene loss in nematodes and insects and expansions in deuterostomes.
Conclusion: The emerging picture of the evolution of the apoptosis network is one of a succession of lineage-specific expansions and losses, which combined with the limited number of 'apoptotic' protein families, resulted in apparent similarities between networks in different organisms that mask an underlying complex evolutionary history. Similar results are beginning to surface for other regulatory networks, contradicting the intuitive notion that regulatory networks evolved in a linear way, from simple to complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246300 | PMC |
http://dx.doi.org/10.1186/gb-2007-8-10-r226 | DOI Listing |
Plants (Basel)
January 2025
KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
L. has exhibited various pharmacological effects, yet its anticancer activities against colorectal cancer (CRC) and underlying molecular mechanisms remain unclear. This study investigated the anticancer properties of an ethanol extract of L.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.
Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania.
: Sodium butyrate (NaB) is a potent modulator of cancer-related gene networks. However, its precise mechanisms of action and effects at elevated doses remain insufficiently explored. This study investigated the impact of NaB at physiologically relevant doses on key cellular metrics (viability, confluence, cell number, morphology, nuclear integrity) and a comprehensive set of apoptosis and proliferation regulators (including underexplored genes) in colorectal cancer (CRC) cells.
View Article and Find Full Text PDFGenes (Basel)
January 2025
College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
(1) Background: Animal growth is a complex process, involving the coordination of a wide variety of genes, non-coding RNAs, and pathways. Circular RNAs (circRNAs) belong to a novel class of functional non-coding RNAs (ncRNAs). They have a distinctive ring structure and are involved in various biological processes, including the proliferation, differentiation, and apoptosis of muscle cells.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland.
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!