Theoretical study of ibuprofen phototoxicity.

J Phys Chem B

Department of Natural Sciences, Orebro University, 701 82 Orebro, Sweden.

Published: November 2007

The photochemical properties and degradation of the common nonsteroid anti-inflammatory drug ibuprofen is studied by means of hybrid density functional theory. Computed energies and properties of various species show that the deprotonated form dominates at physiological pH, and that the species will not be able to decarboxylate from a singlet excited state. Instead, decarboxylation will occur, with very high efficiency, provided the deprotonated compound can undergo intersystem crossing from an excited singlet to its excited triplet state. In the triplet state, the C-C bond connecting the carboxyl group is elongated, and the CO2 moiety detaches with a free energy barrier of less than 0.5 kcal/mol. Depending on the local environment, the decarboxylated product can then either be quenched through intersystem crossing (involving the possible formation of singlet oxygen) and protonation, or serve as an efficient source for superoxide anions and the formation of a peroxyl radical that will initiate lipid peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp076553eDOI Listing

Publication Analysis

Top Keywords

singlet excited
8
intersystem crossing
8
triplet state
8
theoretical study
4
study ibuprofen
4
ibuprofen phototoxicity
4
phototoxicity photochemical
4
photochemical properties
4
properties degradation
4
degradation common
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!