A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The kinetics of Ca(2+)-dependent switching in a calmodulin-IQ domain complex. | LitMetric

The kinetics of Ca(2+)-dependent switching in a calmodulin-IQ domain complex.

Biochemistry

Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA.

Published: November 2007

We have performed a kinetic analysis of Ca2+-dependent switching in the complex between calmodulin (CaM) and the IQ domain from neuromodulin, and have developed detailed kinetic models for this process. Our results indicate that the affinity of the C-ter Ca2+-binding sites in bound CaM is reduced due to a approximately 10-fold decrease in the Ca2+ association rate, while the affinity of the N-ter Ca2+-binding sites is increased due to a approximately 3-fold decrease in the Ca2+ dissociation rate. Although the Ca2+-free and Ca2+-saturated forms of the CaM-IQ domain complex have identical affinities, CaM dissociates approximately 100 times faster in the presence of Ca2+. Furthermore, under these conditions CaM can be transferred to the CaM-binding domain from CaM kinase II via a ternary complex. These properties are consistent with the hypothesis that CaM bound to neuromodulin comprises a localized store that can be efficiently delivered to neuronal proteins in its Ca2+-bound form in response to a Ca2+ signal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577580PMC
http://dx.doi.org/10.1021/bi700774sDOI Listing

Publication Analysis

Top Keywords

ca2+-dependent switching
8
domain complex
8
ca2+-binding sites
8
decrease ca2+
8
cam
6
kinetics ca2+-dependent
4
switching calmodulin-iq
4
domain
4
calmodulin-iq domain
4
complex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!