p53 protein expression levels as bioindicator of individual exposure to ionizing radiation by flow cytometry.

Mol Cell Biochem

Grupo de Estudos em Radioproteção e Radioecologia, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Avenida Professor Luiz Freire, 1000, Cidade Universitária, PE 50740-540, Brazil.

Published: January 2008

Ionizing radiation (IR) can cause various lesions in DNA, which induce the increase of p53 expression levels in order to repair radiation induced damage. Thus, the correlation between the increase of p53 expression and an irradiation may constitute a fast and powerful method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the aim of this research was to evaluate changes in lymphocyte p53 expression levels, based on flow cytometry, after in vitro irradiation of peripheral blood samples. For the measurement of such expression levels of p53 protein, an investigation was carried out in order to establish a methodology of analysis based on flow cytometry. Hence, relationships among levels of expression of p53 protein with the absorbed dose have been verified. The results presented in this report emphasized flow cytometry as an important tool for the fast evaluation of p53 protein expression levels as bioindicator of individual exposure to acute ionizing radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-007-9620-5DOI Listing

Publication Analysis

Top Keywords

expression levels
20
p53 protein
16
flow cytometry
16
ionizing radiation
12
p53 expression
12
protein expression
8
levels bioindicator
8
bioindicator individual
8
individual exposure
8
increase p53
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!