A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study. | LitMetric

Background: Patients on long-term dialysis eventually develop amyloid deposits with beta2-microglobulin as a predominant component. Although several studies have suggested that high-flux membranes reduce beta2-microglobulin in plasma compared with low-flux dialyzers, the mechanisms underlying this observation are still discussed.

Methods: We revisited this important subject and measured beta2-microglobulin in the plasma of healthy individuals (n = 8), and patients undergoing hemodialysis (n = 20) who for assigned periods of time were either treated with a low-flux membrane (cuprophan) or high-flux (polyamide) dialyzer with an ELISA. The number of blood cells was determined by FACS. Beta2-microglobulin was also measured on the surface of granulocytes, lymphocytes, and monocytes before, directly after, and 4 h after hemodialysis. Expression of beta2-microglobulin, c-fos, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 mRNA was determined in whole blood samples with quantitative RT-PCR using an internal standard in parallel. In the second part of the study, patients were assigned in a two-group cross-over design either to low- or high-flux dialyzers (n = 9 in each group), and dialyzer membranes were changed every 4 weeks for two consecutive periods. Serum beta2-microglobulin concentrations were measured at the end of each period.

Results: Healthy controls had a low plasma beta2-microglobulin level of 1.2 +/- 0.3 mg/l. Before hemodialysis, patients on low-flux dialyzers had a plasma beta2-microglobulin level of 42.0 +/- 14.0 mg/l, patients treated with high-flux dialyzers 21.5 +/- 10.8 mg/l (p < 0.05 vs. low-flux dialyzers). In contrast, there was no significant difference in plasma concentrations of active transforming growth factor-beta1 with the two different membrane types. The difference in serum beta2-microglobulin between low- and high-flux membranes was more prominent directly after hemodialysis as well as 4 h after hemodialysis compared with the values directly before the start of treatment. At all studied time-points, leukocytes and platelets were significantly higher in patients on low-flux membranes. Healthy control persons exhibited a significantly higher amount of beta2-microglobulin bound to granulocytes, lymphocytes, and monocytes compared with dialysis patients. Interestingly, beta2-microglobulin bound to granulocytes, lymphocytes, and monocytes was significantly increased in patients treated with high-flux membranes compared with low-flux filters. Quantitative RT-PCR revealed no significant difference in beta2-microglobulin expression in whole blood before hemodialysis, directly after hemodialysis, and 4 h after hemodialysis. However, TNF-alpha and c-fos transcripts were significantly higher in whole blood obtained from patients treated with low-flux membranes compared to high-flux dialyzers. The two-group cross-over study over three periods of 4 weeks revealed that switching from low-flux to high-flux dialyzers significantly reduced serum beta2-microglobulin levels.

Conclusion: Patients treated with a polyamide high-flux membrane had lower beta2-microglobulin concentrations compared with those patients on low-flux dialyzers. This difference might not be mediated by an increase in beta2-microglobulin mRNA, but may be caused by less beta2-microglobulin released from the blood cells in patients treated with high-flux dialyzers, in addition to a better beta2-microglobulin clearance.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000110069DOI Listing

Publication Analysis

Top Keywords

patients treated
24
high-flux dialyzers
24
beta2-microglobulin
17
treated high-flux
16
low-flux dialyzers
16
patients
13
blood cells
12
compared low-flux
12
low-flux membranes
12
high-flux membranes
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!