Most proteins are in equilibrium with partially and globally unfolded conformations. In contrast, kinetically stable proteins (KSPs) are trapped by an energy barrier in a specific state, unable to transiently sample other conformations. Among many potential roles, it appears that kinetic stability (KS) is a feature used by nature to allow proteins to maintain activity under harsh conditions and to preserve the structure of proteins that are prone to misfolding. The biological and pathological significance of KS remains poorly understood because of the lack of simple experimental methods to identify this property and its infrequent occurrence in proteins. Based on our previous correlation between KS and a protein's resistance to the denaturing detergent SDS, we show here the application of a diagonal 2D (D2D) SDS/PAGE assay to identify KSPs in complex mixtures. We applied this method to the lysate of Escherichia coli and upon proteomics analysis have identified 50 nonredundant proteins that were SDS-resistant (i.e., kinetically stable). Structural and functional analyses of a subset (44) of these proteins with known 3D structure revealed some potential structural and functional biases toward and against KS. This simple D2D SDS/PAGE assay will allow the widespread investigation of KS, including the proteomics-level identification of KSPs in different systems, potentially leading to a better understanding of the biological and pathological significance of this intriguing property of proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077256PMC
http://dx.doi.org/10.1073/pnas.0705417104DOI Listing

Publication Analysis

Top Keywords

kinetically stable
12
proteins
9
stable proteins
8
biological pathological
8
pathological significance
8
d2d sds/page
8
sds/page assay
8
structural functional
8
identifying subproteome
4
subproteome kinetically
4

Similar Publications

Article Synopsis
  • Recent research highlights the potential of polyhydroxyalkanoates (PHAs), especially poly(3-hydroxybutyrate) (P3HB), for creating fine fiber nonwoven structures, with fiber diameters ranging from 2.5 µm to 20 µm through the meltblow process.
  • The study identifies limitations in existing PHA fabrics, such as brittleness and low flexibility, but shows how advancements in their processing can lead to stable three-dimensional nonwoven parts.
  • It also reveals that the PHA copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) demonstrates improved elongation properties and resilience compared to P3HB, especially
View Article and Find Full Text PDF
Article Synopsis
  • Coal-based humic acid residue (HAS) has potential as a nutrient-rich material for adsorbing harmful substances like mercury (Hg), and a modified version (N-HAS) was created to enhance its adsorption properties.
  • N-HAS demonstrated a strong capacity for Hg removal, with a maximum adsorption of 124.20 mg/g and stable performance over multiple cycles, effectively lowering Hg levels in both maize and contaminated soil.
  • The study highlighted that using N-HAS led to significant reductions in Hg content in maize kernels (up to 72.09%) and soil (up to 82.80%), with optimal results observed at an application rate of 0.4 kg/m.
View Article and Find Full Text PDF

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!