The propensity of proteins to form beta-sheet-rich amyloid fibrils is related to a variety of biological phenomena, including a number of human neurodegenerative diseases and prions. A subset of amyloidogenic proteins forms amyloid fibrils through glutamine/asparagine (Q/N)-rich domains, such as pathogenic polyglutamine (poly(Q)) proteins involved in neurodegenerative disease, as well as yeast prions. In the former, the propensity of an expanded poly(Q) tract to abnormally fold confers toxicity on the respective protein, leading to neuronal dysfunction. In the latter, Q/N-rich prion domains mediate protein aggregation important for epigenetic regulation. Here, we investigated the relationship between the pathogenic ataxin-3 protein of the human disease spinocerebellar ataxia type 3 (SCA3) and the yeast prion Sup35, using Drosophila as a model system. We found that the capacity of the Sup35 prion domain to mediate protein aggregation is conserved in Drosophila. Although select yeast prions enhance poly(Q) toxicity in yeast, the Sup35N prion domain suppressed poly(Q) toxicity in the fly. Suppression required the oligopeptide repeat of the Sup35N prion domain, which is critical for prion properties in yeast. These results suggest a trans effect of prion domains on pathogenic poly(Q) disease proteins in a multicellular environment and raise the possibility that Drosophila may allow studies of prion mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M705211200 | DOI Listing |
Mol Plant
January 2025
Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().
View Article and Find Full Text PDFFEBS Lett
December 2024
School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan.
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart.
View Article and Find Full Text PDFADMET DMPK
November 2024
Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India.
Background And Purpose: Amyloidosis is a group of diseases including diabetes type II and neurological disorders, such as Alzheimer's disease, Parkinson's disease, prion disease, etc., where a common trait is observed; accumulation of misfolded protein at different parts of the body, especially the brain which manifests the typical symptoms like dementia, movement disorders, etc. These misfolded proteins, named amyloids, are protease resistant and thus it becomes difficult to manage these diseases in vivo.
View Article and Find Full Text PDFCells
November 2024
Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049 Madrid, Spain.
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!