Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.

J Biol Chem

Department of Biology, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.

Published: December 2007

The propensity of proteins to form beta-sheet-rich amyloid fibrils is related to a variety of biological phenomena, including a number of human neurodegenerative diseases and prions. A subset of amyloidogenic proteins forms amyloid fibrils through glutamine/asparagine (Q/N)-rich domains, such as pathogenic polyglutamine (poly(Q)) proteins involved in neurodegenerative disease, as well as yeast prions. In the former, the propensity of an expanded poly(Q) tract to abnormally fold confers toxicity on the respective protein, leading to neuronal dysfunction. In the latter, Q/N-rich prion domains mediate protein aggregation important for epigenetic regulation. Here, we investigated the relationship between the pathogenic ataxin-3 protein of the human disease spinocerebellar ataxia type 3 (SCA3) and the yeast prion Sup35, using Drosophila as a model system. We found that the capacity of the Sup35 prion domain to mediate protein aggregation is conserved in Drosophila. Although select yeast prions enhance poly(Q) toxicity in yeast, the Sup35N prion domain suppressed poly(Q) toxicity in the fly. Suppression required the oligopeptide repeat of the Sup35N prion domain, which is critical for prion properties in yeast. These results suggest a trans effect of prion domains on pathogenic poly(Q) disease proteins in a multicellular environment and raise the possibility that Drosophila may allow studies of prion mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M705211200DOI Listing

Publication Analysis

Top Keywords

prion domain
16
prion
9
toxicity yeast
8
sup35 prion
8
amyloid fibrils
8
domains pathogenic
8
yeast prions
8
prion domains
8
mediate protein
8
protein aggregation
8

Similar Publications

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF

-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().

View Article and Find Full Text PDF

Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart.

View Article and Find Full Text PDF

Natural serine proteases and their applications in combating amyloid formation.

ADMET DMPK

November 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India.

Background And Purpose: Amyloidosis is a group of diseases including diabetes type II and neurological disorders, such as Alzheimer's disease, Parkinson's disease, prion disease, etc., where a common trait is observed; accumulation of misfolded protein at different parts of the body, especially the brain which manifests the typical symptoms like dementia, movement disorders, etc. These misfolded proteins, named amyloids, are protease resistant and thus it becomes difficult to manage these diseases in vivo.

View Article and Find Full Text PDF

Decoding the Molecular Grammar of TIA1-Dependent Stress Granules in Proteostasis and Welander Distal Myopathy Under Oxidative Stress.

Cells

November 2024

Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC/UAM), C/Nicolás Cabrera 1, 28049 Madrid, Spain.

T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!