A method based on high-performance liquid chromatography with ultraviolet detection has been developed to quantify ubidecarenone [coenzyme Q10 (CoQ10)] in raw materials and dietary supplements. Single-laboratory validation has been performed on the method to determine repeatability, accuracy, selectivity, limits of detection and quantification (LOQ), ruggedness, and linearity for CoQ10. As CoQ10 can exist as the biologically active reduced form, the application of an oxidizing agent, ferric chloride, drives the equilibrium mechanics to the fully oxidized state and allows for exact quantification of total CoQ10 in the sample. This method was found to be fit and linear for the testing of materials containing CoQ10 in the range of approximately equal 50-1000 mg/g. Repeatability precision for CoQ10 was between 2.15 and 5.00% relative standard deviation. Observed recovery of CoQ10 was found to be between 93.8 and 100.9%. LOQ was found to be 9 microg/mL. Further, limited studies showed that some adulterants and degraded material could be satisfactorily separated from CoQ10 and identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586112 | PMC |
ACS Appl Mater Interfaces
March 2025
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
The relationship between the structure and function of condensed matter is complex and changeable, which is especially suitable for combination with machine learning to quickly obtain optimized experimental conditions. However, little research has been done on the effect of temperature on condensed matter and how it affects device performance because the difference between the in situ physical property parameters (which are lowered by the surface tension and mixing entropy) and the basic parameters of the bulk makes accurate AI predictions difficult. In this work, P3HT/ITIC was chosen as the donor/acceptor material for the active layer of organic phototransistors (OPTs).
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2025
Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt.
Background: Several microalgae and macro-algae have been showed considerable promise bio-material in various multidisciplinary fields. l-asparaginase (l- ASase) have a greater reduction effect on the formation of acrylamide in heated carbohydrate food products such as potato chips and bakery produced at high temperatures (above 120 °C). Acrylamide showed neurotoxic and carcinogenic effects in experimental animals and humans.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
Traditional wood-plastic composites (WPC) face numerous challenges in their applications, such as the lack of flexibility, cushioning performance, water barrier properties, biodegradability and recyclability. To address these issues, in this work, a recyclable lignocellulosic biocomposites with excellent comprehensive performance was developed using cork flour and poly(1,4-dioxan-2-one) (PPDO) as the green raw materials. The prepared cork/PPDO WPC contained up to 70 wt% cork flour, conferring them with enhanced flexibility (elongation at break >10 %) and cushioning performance due to the strong interactions between PPDO and cork flour, as well as the cork unique flexibility from cork cavity structure and suberin.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Traditionally unsustainable and nondegradable fossil-based based plastics have resulted in serious environment pollution problem. Renewable and biodegradable lignocellulose biomass is a promising raw martial for developing environmentally friendly plastic alternatives. However, lignocellulose biomass itself is non-thermoplastic crosslinking networks consisting of cellulose, lignin, and hemicellulose, resulting in a huge challenge to thermoform its into plastic alternatives.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China. Electronic address:
Alpinia oxyphylla Miq., a well-accepted medicinal and edible plant in south China. The primary ingredients of this medicine vary significantly depending on their origin, which profoundly impacts its quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!