The formation of CaCO3 is usually discussed within the classical picture of crystallization, i.e. assuming that the formation of CaCO3 crystals proceeds via nucleation and growth. This may be true for the case of low supersaturation. In this work it is shown that the formation process is far more complex at high supersaturation, i.e. during precipitation. New insight into the mechanisms of precipitation is obtained by analyzing structure formation with a time resolution down to the millisecond range from the initiation of the reaction. The techniques used are scanning electron microscopy, electron diffraction, X-ray microscopy and cryo-transmission electron microscopy combined with a special quenching technique. It is seen that upon mixing CaCl2 and Na2CO3 solutions (0.01 M) first an emulsion-like structure forms. This structure decomposes to CaCO3-nanoparticles. These nanoparticles aggregate to form vaterite spheres of some micrometers in diameter. The spheres transform via dissolution and recrystallization to calcite rhombohedra. Once a suitable amount of additive, in our case polycarboxylic acid, is present during the precipitation the nanoparticles are stabilized against compact aggregation; instead they form flocs. This stabilization is either of a temporary nature if the amount of polymer is insufficient to cover the surface of the nanoparticles formed or more long lived if there is enough polymeric material present. By means of Ca-activity measurements it can be shown that the polymers are partially incorporated into the forming crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b701450cDOI Listing

Publication Analysis

Top Keywords

formation caco3
8
electron microscopy
8
formation
5
precursor structures
4
structures crystallization/
4
precipitation
4
crystallization/ precipitation
4
precipitation processes
4
processes caco3
4
caco3 control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!