Prostaglandin E2: at the crossroads between stem cell development, inflammation and cancer.

Cancer Biol Ther

Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.

Published: October 2007

Stem cells have tremendous therapeutic potential for a series of pathologies ranging from cancer to genetic diseases. The obstacles to exploiting their potential reside mainly in their limited numbers or potency. Prostaglandins are known to be involved in many physiological and pathological processes. Among these, their importance in stem cell development is just starting to emerge. The recent findings by North and colleagues (Nature, 2007; 447:1007-1011) uncover a crucial role for PGE2 in hematopoietic stem cell growth and development not only in embryonic, but also in adult stem cell homeostasis in both simple and complex vertebrate systems. This new information adds to recent advances in the study of PGE2's role in many diseases and in the reaction to various cellular stress conditions. This is the perfect time to improve our knowledge of stem cell regulation, which hopefully will lead to improved stem cell-based therapeutic options and also to better understand and manage current anti-inflammatory and immuno-suppressive drugs in the therapy of cancer and other diseases.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cbt.6.10.4750DOI Listing

Publication Analysis

Top Keywords

stem cell
20
cell development
8
stem
7
cell
5
prostaglandin crossroads
4
crossroads stem
4
development inflammation
4
inflammation cancer
4
cancer stem
4
stem cells
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Neutrophil-to-lymphocyte ratio and short-term mortality in patients having anti-MDA5-positive dermatomyositis with interstitial lung disease: a retrospective study.

BMC Pulm Med

January 2025

Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.

Background: In this study, we aimed to explore the association between baseline and early changes in the neutrophil-to-lymphocyte ratio (NLR) and the 30-day mortality rate in patients having anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis with interstitial lung disease (DM-ILD).

Methods: Overall, 263 patients with anti-MDA5 DM-ILD from four centers in China were analyzed. Multivariate logistic regression analysis was used to evaluate the impact of baseline NLR on the 30-day mortality rate in patients with anti-MDA5-positive DM-ILD.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!