Scavenger receptor class B type I (SR-BI) functions as an HDL receptor that promotes the selective uptake of cholesteryl esters (CEs). The physiological role of SR-BI in VLDL metabolism, however, is largely unknown. SR-BI deficiency resulted in elevated VLDL cholesterol levels, both on chow diet and upon challenge with high-cholesterol diets. To specifically elucidate the role of SR-BI in VLDL metabolism, the plasma clearance and hepatic uptake of (125)I-beta-VLDL were studied in SR-BI(+/+) and SR-BI(-/-) mice. At 20 min after injection, 66 +/- 2% of the injected dose was taken up by the liver in SR-BI(+/+) mice, as compared with only 22 +/- 4% (P = 0.0007) in SR-BI(-/-) mice. In vitro studies established that the B(max) of (125)I-beta-VLDL binding was reduced from 469 +/- 30 ng/mg in SR-BI(+/+) hepatocytes to 305 +/- 20 ng/mg (P = 0.01) in SR-BI(-/-) hepatocytes. Both in vivo and in vitro, limited to no selective uptake of CEs from beta-VLDL was found. Interestingly, HDL effectively competed for the association of beta-VLDL in the presence as well as in the absence of SR-BI, indicating a second common recognition site. In conclusion, SR-BI plays an important physiological role in the metabolism of VLDL (remnants).

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M700355-JLR200DOI Listing

Publication Analysis

Top Keywords

scavenger receptor
8
metabolism vldl
8
selective uptake
8
physiological role
8
role sr-bi
8
sr-bi vldl
8
vldl metabolism
8
sr-bi-/- mice
8
+/- ng/mg
8
sr-bi
6

Similar Publications

Obesity is a global epidemic associated with chronic inflammation, oxidative stress, and metabolic disorders. Bariatric surgery is a highly effective intervention for sustained weight loss and the improvement of obesity-related comorbidities. However, post-surgery nutritional deficiencies, including vitamin E, remain a concern.

View Article and Find Full Text PDF

Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.

View Article and Find Full Text PDF

Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.

View Article and Find Full Text PDF

This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals.

View Article and Find Full Text PDF

While key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!