The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614105PMC
http://dx.doi.org/10.1098/rstb.2007.2211DOI Listing

Publication Analysis

Top Keywords

electron spin-echo
8
spin-echo envelope
8
envelope modulation
8
eseem studies
8
cluster state
8
frequencies
5
multifrequency electron
4
modulation studies
4
studies nitrogen
4
nitrogen ligation
4

Similar Publications

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.

View Article and Find Full Text PDF

Insights into Folding and Molecular Environment of Lyophilized Proteins Using Pulsed Electron Paramagnetic Resonance Spectroscopy.

Mol Pharm

January 2025

Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany.

There is still an insufficient understanding of how the characteristics of protein drugs are maintained in the solid state of lyophilizates, including aspects such as protein distances, local environment, and structural preservation. To this end, we evaluated protein folding and the molecules' nearest environment by electron paramagnetic resonance (EPR) spectroscopy. Double electron-electron resonance (DEER) probe distances of up to approximately 200 Å and is suitable to investigate protein folding, local concentration, and aggregation, whereas electron spin echo envelope modulation (ESEEM) allows the study of the near environment within approximately 10 Å of the spin label.

View Article and Find Full Text PDF

Purpose: Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!