Objective: To study correlation of brain hypoxia of different degrees with brain function and damage.

Methods: The brain regional oxygen saturation (rSO2) was determined by using a non-invasive near infrared spectroscopy (NIRS) technique in 15 piglets; the piglets were subjected to inhale 3% - 11% oxygen-nitrogen mixed gas through mechanical ventilation for 30 min. The piglets were divided into groups according to the level of brain rSO2 (i.e. < 30%, 30% - 35%, 35% - 40%, and 40% - 50%), and the data were compared with those of the control group (rSO2 > 60%). Changes of brain function were detected through amplitude and frequency of EEG waves and signal complexity. The piglets were sacrificed via decapitation 72 h after brain damage, and then histopathological and ultrastructural examinations were performed on cerebral cortex and hippocampal CA1 area.

Results: In the group with rSO2 > 40%, the mean arterial pressure (MAP) after hypoxia was (56 +/- 0.00) mm Hg (1 mm Hg = 0.133 kPa), the blood lactic acid (LA) was (2.3 +/- 1.2) mmol/L, the EEG findings were within normal range, and there was no change in brain tissue ultrastructure. In the group with brain rSO2 = 30% approximately 40%, the MAP was (73 +/- 8) mm Hg, the LA was (8.2 +/- 3.9) mmol/L, the EEG waves showed decreased amplitude, frequency and complexity, but restored to some extent after hypoxia. The brain tissue ultrastructure showed damages to the cerebral cortex and neuron mitochondria at hippocampal CA1 area. In the group with brain rSO2 < 30%, the MAP was (35 +/- 0) mm Hg, the LA was (12 +/- 2) mmol/L, the EEG showed decreased amplitude, frequency, and complexity of signals compared with those of the normal control group, and was difficult to restore after hypoxia in some of the piglets; the brain tissue ultrastructure appeared to be similar to the changes seen with high-degree swollen cerebral cortex and neuron mitochondria at hippocampal CA1 area.

Conclusion: Different degrees of hypoxia had different influence on brain function and brain damage. The lower the brain rSO2, the more severe the damages to the brain and its function. The rSO2 of brain tissues detected with noninvasive NIRS can reflect brain injury and its severity during cerebral anoxia.

Download full-text PDF

Source

Publication Analysis

Top Keywords

brain function
20
brain
19
brain rso2
16
brain damage
12
rso2 30%
12
amplitude frequency
12
cerebral cortex
12
hippocampal ca1
12
+/- mmol/l
12
mmol/l eeg
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!