Liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry represents a sensitive, hyphenated MS- and MS/MS-technique with a broad range of applications in all areas ofproteome analysis. Whereas a number of interface types have been developed for coupling MALDI MS and liquid chromatography, in this chapter selected on-line and off-line types and techniques will be discussed with respect to their individual properties and performance. The technique is especially attractive in off-line mode where LC-separation and MS analyses are decoupled and each step can be performed at its individual optimum. Different speed of chromatographic separation and achievement of S/N criteria in MS or MS/MS mode can be optimized independently by individual adjustment of specific operating parameters. This flexibility makes LC-MALDI MS attractive for the analysis of peptide mixtures from low to medium complexity. Using sequential MS analysis of parallel LC runs (multiplexing), even highly complex samples can be handled. Quantitation at the MS and MS/MS level can be accomplished by a variety of labeling techniques, where the predominant formation of singly charged ions in MALDI alleviates the assignment of isotopomers. After discussing the level of complementarity between LC-MALDI and LC-ESI MS, selected applications of LC-MALDI MS are presented. Examples of membrane protein analysis applying 1D SDS PAGE are discussed in detail as well as applications in protein interaction analysis. These application examples clearly show that in all respects LC-MALDI MS and MS/MS are flexible and sensitive techniques which can be adapted to a wide range of different workflows.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4020-5943-8_17DOI Listing

Publication Analysis

Top Keywords

analysis
6
lc-maldi
5
lc-maldi ms/ms--an
4
ms/ms--an efficient
4
efficient tool
4
tool proteome
4
proteome analysis
4
analysis liquid
4
liquid chromatography-matrix-assisted
4
chromatography-matrix-assisted laser
4

Similar Publications

Nanoscale Magnetic Ordering Dynamics in a High Curie Temperature Ferromagnet.

Nano Lett

January 2025

Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.

Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .

View Article and Find Full Text PDF

Some scholars have suggested that social and cultural barriers between physicians and patients might contribute to health disparities. The purpose of this review was to determine the state of evidence regarding how physician communication patterns differ by patient ethnicity. Seventy-nine studies employing a range of methodologies were identified.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

Control of Interlocking Mode in Pd4L8 Cage Catenanes.

Angew Chem Int Ed Engl

January 2025

TU Dortmund University, Faculty for Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, GERMANY.

Precise control over the catenation process in interlocked supramolecular systems remains a significant challenge. Here, we report a system in which a lantern-shaped Pd2L4 cage can dimerize to form two distinct Pd4L8 catenanes with different interlocking degree: a previously described quadruply interlocked double cage motif of D4 symmetry and an unprecedented triply interlocked structure of C2h symmetry. While the former structure features a linear arrangement of four Pd(II) centers, separated by three mechanically linked pockets, the new motif has a staggered shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!