The purpose of this study was to investigate hydrolysis of animal fleshing (ANFL), a predominant tannery solid waste and to characterize the acetogenic fermentation products of anaerobic digestion. The acidogenic digestibility of the tannery solid wastes were evaluated up to 120 h using batch anaerobic digestion tests performed under mesophilic condition at 37 degrees C. The degradation of ANFL starts with non-fibrillar proteins and proceeds with fibrillar proteins. The release of aliphatic amino acid in the early stages of hydrolysis (24 h) and followed by aromatic amino acids (24-72 h) were evidenced by HPLC analysis. The maximum production of propionic and valeric acid were observed in 72 h followed by rapid increase in acetic acid in 96 h using GC-MS. Breakdown of ANFL and formations of other metabolites were evidenced by FT-IR and (1)H-NMR spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10532-007-9159-xDOI Listing

Publication Analysis

Top Keywords

solid waste
8
tannery solid
8
anaerobic digestion
8
acidogenic fermentation
4
fermentation proteinaceous
4
proteinaceous solid
4
waste characterization
4
characterization bioconversion
4
bioconversion stages
4
stages extracellular
4

Similar Publications

How does meditation relate to quality of life, positive lifestyle habits and carbon footprint?

Heliyon

January 2025

Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, 03, Sri Lanka.

There is increasing scientific interest in the potential links between meditation practice and pro-environmental behaviours. The present research investigates relationships between meditation experience (temporal variables of meditation, five facets of trait mindfulness), positive lifestyle habits (PLH), quality of life (QoL) and per-head carbon footprint (CF) among 25 skilled meditators. Self-reported validated questionnaires were given to a group of native speakers of Sri Lanka to collect data on meditation experience, PLH, and perceived QoL.

View Article and Find Full Text PDF

Utilization of refuse-derived fuel in industrial applications: Insights from Uttar Pradesh, India.

Heliyon

January 2025

Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.

Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.

View Article and Find Full Text PDF

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Machine learning-assisted assessment of municipal solid waste thermal treatment efficacy via rapid image recognition and visual analysis.

Waste Manag

January 2025

School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

Decentralized thermal treatment is a common method for municipal solid waste (MSW) disposal in rural areas. However, evaluating the effect of incineration has always been challenging owing to the difficult and time-consuming measurements involved. Herein, this study presented a rapid image recognition method for assessing the effects of thermal treatment on MSW using a neural network algorithm and a BAEVA 1.

View Article and Find Full Text PDF

Predicting cobalt ion concentration in hydrometallurgy zinc process using data decomposition and machine learning.

Sci Total Environ

January 2025

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China. Electronic address:

Solid waste is one of the primary contributors to environmental pollution currently, it is crucial to enhance the prevention and control of solid waste pollution in environmental management. The effectiveness of the second stage of purification in the industrial zinc hydrometallurgy is determined by the concentration of cobalt ion. Manual testing and monitoring of cobalt ion concentration are time consuming and costly, and prone to delays, which can result in discharge of cobalt ion concentration that does not meet the standards, leading to water pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!