Surfactant lung lavage is a promising approach in the treatment of meconium aspiration syndrome (MAS). We hypothesise that the enrichment of modified natural surfactant with dextran will enhance meconium clearance from the airspaces during lung lavage and improve lung function in experimental MAS. Human meconium (30 mg/ml; 4 ml/kg) was instilled into the tracheal cannula of anaesthetised and paralysed adult rabbits to induce respiratory failure. The animals were then lavaged with saline (Sal), surfactant without (Surf) and with dextran (Surf+dex). Lung lavage (10 ml/kg in three portions) was performed with diluted surfactant (Curosurf, 10 mg/ml, 100 mg/kg) without or with dextran (3 mg/mg of surfactant phospholipids) or saline and the animals were conventionally ventilated with 100% O(2) for an additional hour. Lung functions were measured prior to and after meconium instillation, and 10, 30 and 60 min after lavage. The recovery of meconium in bronchoalveolar lavage (BAL) fluid was quantified. More meconium solids was recovered in the surfactant-lavaged than in the saline-lavaged groups (Surf: 12.4 +/- 3.9% and Surf+dex: 17.5 +/- 3.5% vs. Sal: 4.8 +/- 1.0%; both P < 0.01). Moreover, more meconium solids was obtained by Curosurf/dextran than by Curosurf-only lavage (P < 0.05). In the Surf group, the values for PaO(2)/FiO(2) were significantly higher than in the controls (at 60 min: 24.5 +/- 4.2 kPa vs.9.1 +/- 2.2 kPa, P < 0.01). An additional increase in oxygenation was seen in the Surf+dex group (at 60 min: 34.2 +/- 8.1 kPa, P vs. Surf group <0.01). The lung-thorax compliance was higher in the Surf+dex group in comparison with the Sal and Surf groups (at 60 min: 9.6 +/- 0.9 vs.7.6 +/- 1.2, P < 0.01 and 8.0 +/- 0.7 ml/kPa/kg, P < 0.05). The enrichment of Curosurf with dextran improves meconium clearance and lung functions in surfactant-lavaged rabbits with meconium aspiration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-007-0596-7DOI Listing

Publication Analysis

Top Keywords

lung lavage
12
+/- kpa
12
meconium
9
bronchoalveolar lavage
8
meconium clearance
8
lung functions
8
meconium aspiration
8
aspiration syndrome
8
meconium solids
8
surf group
8

Similar Publications

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.

Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.

View Article and Find Full Text PDF

Genomic insights into a multidrug-resistant Pandoraea apista clinical isolate carrying bla from China.

J Glob Antimicrob Resist

January 2025

Clinical Laboratory Department, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China. Electronic address:

Objectives: Pandoraea apista is notable for its multidrug resistance and is frequently identified in patients with cystic fibrosis or other chronic lung diseases, where it contributes to persistent lung infections. In this study, we describe a strain of P. apista harboring the bla, isolated from the bronchoalveolar lavage (BAL) fluid of an inpatient in China.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!