Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of muscarinic acetylcholine receptors (mAChR) is one of the most important signal transduction pathways in the human body. In this study, we investigated the role of mAChR activation in relation to its subtypes in human retinoblastoma cell-lines (WERI-Rb-1) using Ca(2+) measurement, real-time PCR, and Western Blot techniques. Acetylcholine (ACh) produced prominent [Ca(2+)](i) transients in a repeated manner in WERI-Rb-1 cells. The maximal amplitude of the [Ca(2+)](i) transient was almost completely suppressed by 97.3 +/- 0.8% after atropine (1 microM) pretreatment. Similar suppressions were noted after pretreatments with thapsigargin (1 microM), an ER Ca(2+)-ATPase (SERCA) inhibitor, whereas the ACh-induced [Ca(2+)](i) transient was not affected even in the absence of extracellular calcium. U-73122 (1 microM), a PLC inhibitor, and xestospongin C (2 microM), an IP(3)-receptor antagonist, elicited 11.5 +/- 2.9% and 17.8 +/- 1.9% suppressions, respectively. The 50% inhibitory concentration of (IC(50)) values for blockade of a 100 microM ACh response by pirenzepine and 4-DAMP were 315.8 and 9.1 nM, respectively. Moreover, both M(3) and M(5) mAChRs were prominent in quantitative real-time-PCR. Taken together, the M(3)/M(5) subtypes appear to be the major contributor, leading to intracellular calcium mobilization from the internal store via an IP(3)-dependent pathway in the undifferentiated retinoblastoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.fp0070877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!