A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using directed information to build biologically relevant influence networks. | LitMetric

Using directed information to build biologically relevant influence networks.

Comput Syst Bioinformatics Conf

Electrical Engineering and Computer Science, Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

Published: December 2007

The systematic inference of biologically relevant influence networks remains a challenging problem in computational biology. Even though the availability of high-throughput data has enabled the use of probabilistic models to infer the plausible structure of such networks, their true interpretation of the biology of the process is questionable. In this work, we propose a network inference methodology, based on the directed information (DTI) criterion, which incorporates the biology of transcription within the framework, so as to enable experimentally verifiable inference. We use publicly available embryonic kidney and T-cell microarray datasets to demonstrate our results. We present two variants of network inference via DTI (supervised and unsupervised) and the inferred networks relevant to mammalian nephrogenesis as well as T-cell activation. We demonstrate the conformity of the obtained interactions with literature as well as comparison with the coefficient of determination (CoD) method. Apart from network inference, the proposed framework enables the exploration of specific interactions, not just those revealed by data.

Download full-text PDF

Source

Publication Analysis

Top Keywords

network inference
12
biologically relevant
8
relevant influence
8
influence networks
8
inference
5
directed build
4
build biologically
4
networks
4
networks systematic
4
systematic inference
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!