This chapter describes a method of sample preparation called "the rock and roll method," which is basically a solvent evaporation technique with controlled manual sample movement during evaporation of solvent from lipid/solvent mixtures that produces well-oriented thick stacks of about 2000 lipid bilayers. Many lipid types have been oriented using different solvent mixtures that balance solubilization of the lipid with uniform deposition of the lipid solution onto solid substrates. These well-oriented thick stacks are then ideal samples for collection of both X-ray diffraction data in the gel phase and X-ray diffuse scattering data in the fluid phase of lipids. The degree of orientation is determined using visual inspection, polarizing microscopy, and a mosaic spread X-ray experiment. Atomic force microscopy is used to compare samples prepared using the rock and roll method with those prepared by spin-coating, which produces well-oriented but less homogeneous lipid stacks. These samples can be fully hydrated through the vapor provided that the hydration chamber has excellent temperature and humidity control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697614 | PMC |
http://dx.doi.org/10.1007/978-1-59745-519-0_5 | DOI Listing |
J Hazard Mater
January 2025
Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health & Environment, Seoul National University, Seoul, South Korea. Electronic address:
Structural diversity can affect the degradability of per- and polyfluoroalkyl substances (PFASs) during water treatment. Here, three PFASs with different functional groups-CF-R, PFHpA, PFHxS, and 6:2 FTS-were degraded using vacuum ultraviolet (VUV/UV)-based treatments. While fully fluorinated PFASs-PFHpA and PFHxS-were degraded faster in the VUV/UV/sulfite reaction than in VUV/UV photolysis, VUV/UV photolysis was more effective for degrading 6:2 FTS by OH radicals produced through photolysis of water.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Resources and Safety Engineering, Central South University, Changsha 410083, China.
Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiology, University of California San Diego, San Diego, CA 92037, USA.
It is known that ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences can detect signals from water protons but not collagen protons in short T2 species such as cortical bone and tendons. However, whether collagen protons are visible with the zero echo time (ZTE) MRI sequence is still unclear. In this study, we investigated the potential of the ZTE MRI sequence on a clinical 3T scanner to directly image collagen protons via DO exchange and freeze-drying experiments.
View Article and Find Full Text PDFFront Psychol
January 2025
Intercollegiate Athletics, University of Michigan, Ann Arbor, MI, United States.
Objective: Wrestling is a complex sport that requires a combination of strength, endurance, and wrestling-specific technical training. Endurance activities, such as running, are commonly performed for rapid weight reduction before competition. However, these activities can severely disrupt recovery and lead to significant declines in performance.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!