Membrane protein insertion and secretion in bacteria.

Methods Mol Biol

Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Materials Science Center Plus, University of Groningen, The Netherlands.

Published: June 2008

Export of secretory proteins across and insertion of membrane proteins into the cytoplasmic membrane of Escherichia coli and other bacteria is mediated by the enzyme complex translocase. The last decade has seen a major advance in the understanding of the mechanism of these processes. A large part of this progress can be attributed to the development of general and powerful methods to study the translocase activity in vitro. Here we describe a transcription-translation method used to analyze the insertion of membrane proteins into E. coli inner membrane vesicles and a rapid and quantitative fluorescent method to analyze the translocation of secretory proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-466-7_2DOI Listing

Publication Analysis

Top Keywords

secretory proteins
8
insertion membrane
8
membrane proteins
8
method analyze
8
membrane
5
membrane protein
4
protein insertion
4
insertion secretion
4
secretion bacteria
4
bacteria export
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!