Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malignant transformation often leads to both loss of normal proliferation control and inhibition of cell differentiation. Some tumor cells can be stimulated to reenter their differentiation program and to undergo terminal growth arrest. The in vitro differentiation of mouse erythroleukemia (MEL) cells is an important example of tumor cell reprogramming. MEL cells are malignant erythroblasts that are blocked from differentiating into mature RBC due to dysregulated expression of the transcription factor PU.1, which binds to and represses GATA-1, the major transcriptional regulator of erythropoiesis. We used RNA interference to ask whether inhibiting PU.1 synthesis was sufficient to cause MEL cells to lose their malignant properties. We report here that transfection of MEL cells with a PU.1-specific short interfering RNA oligonucleotide causes the cells to resume erythroid differentiation, accumulate hemoglobin, and undergo terminal growth arrest. RNA interference directed at specific, aberrantly expressed transcription factors may hold promise for the development of potent antitumor therapies in other hematologic malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190309 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-07-0145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!