Divergent regulation of the sarcomere and the cytoskeleton.

J Biol Chem

Oncology Research Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, Sydney, New South Wales 2006, Australia. Electronic address:

Published: January 2008

The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M704392200DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
striated muscles
8
thin filaments
8
cytoskeleton nonmuscle
8
nonmuscle cells
8
cytoskeletal tms
8
actin
7
divergent regulation
4
regulation sarcomere
4
cytoskeleton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!