Cerebral white matter undergoes various changes with normal aging. This study investigated the association between age, gender, and the global and regional fractional anisotropy (FA) and mean diffusivity (MD) in 145 adults (30 to 80 years old) using diffusion tensor magnetic resonance imaging. We studied sixteen regions of interest in both hemispheres to search for regions that display age- and gender-related white matter changes and also performed a complementary voxel-based analysis without any hypothesis a priori. On a global scale, our results indicate that the full brain FA was negatively correlated with age. The regional analysis showed that the anterior corpus callosum, the bilateral anterior and posterior internal capsule, and the posterior periventricular regions had the most significant age-related FA decrease. On the other hand, the FA in the temporal and occipital regions was not correlated with age. However, in contrast to males, females overall had a significantly lower FA in the right deep temporal regions. More gender differences in precentral, cingulate, and anterior temporal white matter areas were also found, suggesting that microstructural white matter organization in these regions may have a sexual dimorphism. Such differences were mainly due to the increase in diffusion perpendicular to fiber tracts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2007.09.017DOI Listing

Publication Analysis

Top Keywords

white matter
20
gender differences
8
matter changes
8
diffusion tensor
8
correlated age
8
regions
6
white
5
matter
5
differences age-related
4
age-related white
4

Similar Publications

Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.

Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Correction: The two sides of Phobos: Gray and white matter abnormalities in phobic individuals.

Cogn Affect Behav Neurosci

January 2025

Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis.

Cell Rep

January 2025

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!