Pyridoxal 5'-phosphate (PLP) is required as a cofactor by many enzymes. The predominant de novo biosynthetic route is catalyzed by a heteromeric glutamine amidotransferase consisting of the synthase subunit Pdx1 and the glutaminase subunit Pdx2. Previously, Bacillus subtilis PLP synthase was studied by X-ray crystallography and complex assembly had been characterized by isothermal titration calorimetry. The fully assembled PLP synthase complex contains 12 individual Pdx1/Pdx2 glutamine amidotransferase heterodimers. These studies revealed the occurrence of an encounter complex that is tightened in the Michaelis complex when the substrate l-glutamine binds. In this study, we have characterized complex formation of PLP synthase from the malaria-causing human pathogen Plasmodium falciparum using isothermal titration calorimetry. The presence of l-glutamine increases the tightness of the interaction about 30-fold and alters the thermodynamic signature of complex formation. The thermodynamic data are integrated in a 3D homology model of P. falciparum PLP synthase. The negative experimental heat capacity (C(p)) describes a protein interface that is dominated by hydrophobic interactions. In the absence of l-glutamine, the experimental C(p) is less negative than in its presence, contrasting to the previously characterised bacterial PLP synthase. Thus, while the encounter complexes differ, the Michaelis complexes of plasmodial and bacterial systems have similar characteristics concerning the relative contribution of apolar/polar surface area. In addition, we have verified the role of the N-terminal region of PfPdx1 for complex formation. A "swap mutant" in which the complete alphaN-helix of plasmodial Pdx1 was exchanged with the corresponding segment from B. subtilis shows cross-binding to B. subtilis Pdx2. The swap mutant also partially elicits glutaminase activity in BsPdx2, demonstrating that formation of the protein complex interface via alphaN and catalytic activation of the glutaminase are linked processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2007.09.038DOI Listing

Publication Analysis

Top Keywords

plp synthase
20
complex formation
12
plasmodium falciparum
8
glutamine amidotransferase
8
complex
8
isothermal titration
8
titration calorimetry
8
synthase
7
plp
6
structural thermodynamic
4

Similar Publications

Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.

Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.

View Article and Find Full Text PDF

5-Aminolevulinate synthase (ALAS) is a PLP-dependent enzyme that catalyzes the production of 5-aminolevulinate from succinyl-CoA and glycine. Its ability to catalyze the essentially irreversible - bond formation has significant potential in chemoenzymatic synthesis of α-amino ketones. Native ALAS, unfortunately, is extremely substrate-selective, and this seriously limits its synthetic utility.

View Article and Find Full Text PDF

Molecular Basis for Cγ-N Bond Formation by PLP-Dependent Enzyme LolC.

Biochemistry

December 2024

Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a diverse array of biochemical transformations, making them invaluable biocatalytic tools for the synthesis of complex bioactive compounds. Here, we report the biochemical characterization of LolC, a PLP-dependent γ-synthase involved in the biosynthesis of loline alkaloids. LolC catalyzes the formation of a Cγ-N bond between -acetyl--homoserine (OAH) and l-proline, generating a diamino diacid intermediate.

View Article and Find Full Text PDF

Structure and identification of the native PLP synthase complex from lysate.

mBio

January 2025

Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA.

Many protein-protein interactions behave differently in biochemically purified forms as compared to their states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here, we apply the bottom-up structural proteomics method, , toward a model methanogenic archaeon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!