Introduction: We have recently demonstrated that obese and lean mice fed a high fat diet have increased gallbladder wall fat and decreased gallbladder contractility, cholecystosteatosis. Animal and human data also suggest that diets high in refined carbohydrates lead to gallstone formation. However, no data are available on the role of dietary carbohydrates on gallbladder wall fat and inflammation. Therefore, we tested the hypothesis that both obesity and dietary carbohydrates would increase gallbladder fat and cytokines, steatocholecystitis.
Methods: At 8 wk of age, 47 lean and 22 obese female mice were fed a 45% carbohydrate (CHO) diet while an equal number of lean and obese mice were fed a 75% CHO diet for 4 wk. All mice underwent cholecystectomy, and the gallbladders were snap-frozen. Individual and total lipids were measured by gas chromatography. Interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6 were measured by enzyme-linked immunosorbent assay. Data were analyzed by analysis of variance and Tukey test.
Results: Gallbladder total fat, triglycerides, and cholesterol were maximum (P < 0.001) in obese mice on the 75% CHO diet. Gallbladder TNF-alpha and IL-1beta as well as serum cholesterol levels showed a similar pattern (P < 0.001). Gallbladder saturated free fatty acids and IL-6 levels were highest (P < 0.001) in obese mice on the 45% CHO diet.
Conclusions: These data suggest that (1) both obesity and dietary carbohydrates increase gallbladder total fat, triglycerides, cholesterol, TNF-alpha, and IL-1beta and (2) obesity also increases gallbladder free fatty acids and IL-6. Therefore, we conclude that obesity is associated with steatocholecystitis and that a high carbohydrate diet exacerbates this phenomenon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2431458 | PMC |
http://dx.doi.org/10.1016/j.jss.2007.04.042 | DOI Listing |
Semin Immunopathol
January 2025
Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.
View Article and Find Full Text PDFPlanta
January 2025
Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, 32901, USA.
The starch-statolith theory was established science for a century when the existence of gravitropic, starchless mutants questioned its premise. However, detailed kinetic studies support a statolith-based mechanism for graviperception. Gravitropism is the directed growth of plants in response to gravity, and the starch-statolith hypothesis has had a consensus among scientists as the accepted model for gravity perception.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy.
Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.
Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).
Food Chem
January 2025
Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA. Electronic address:
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!