Background: Stun guns or electromuscular incapacitation devices (EMIs) generate between 25,000 and 250,000 V and can be discharged continuously for as long as 5 to 10 min. In the United States, over 200,000 individuals have been exposed to discharges from the most common type of device used. EMI devices are being used increasingly despite a lack of objective laboratory data describing the physiological effects and safety of these devices. An increasing amount of morbidity, and even death, is associated with EMI device use. To examine this type of electrical injury, we hypothesized that EMI discharges will induce acute or delayed cardiac arrhythmia and neuromuscular injury in an animal model.
Methods: Using an IACUC approved protocol, from May 2005 through June 2006 in a teaching hospital research setting, 30 Yucatan mini-pigs (24 experimentals and 6 sham controls) were deeply anesthetized with ketamine and xylazine without paralytics. Experimentals were exposed to discharges from an EID (MK63; Aegis Industries, Bellevue, ID) over the femoral nerve on the anterior left hind limb for an 80 s exposure delivered as two 40 s discharges. EKGs, EMGs, troponin I, CK-MB, potassium, and myoglobin levels were obtained pre-discharge and post-discharge at 5, 15, 30, and 60 min, 24, 48, and 72 h (n = 6 animals) and 5, 15, and 30 d post-discharge (n = 6 animals at each time point). Skin, skeletal muscle, and peripheral nerve biopsies were studied bilaterally. Data were compared using one-way analysis of variance and paired t-tests. P-values <0.05 were considered significant.
Results: No cardiac arrhythmias or sudden deaths were seen in any animals at any time point. No evidence of skeletal muscle damage was detected. No significant changes were seen in troponin I, myoglobin, CK-MB, potassium, or creatinine levels. There were no significant changes in compound muscle action potentials (CMAP). No evidence of conduction block, conduction slowing, or axonal loss were detected on EMG. M-wave latency (M(lat), ms), amplitude (M(amp), mV), area (M(area), mV-ms), and duration (M(dur), ms) were not significantly affected by MK63 discharge compared with contralateral or sham controls. F-wave latency (F(lat), ms), a sensitive indicator of retrograde nerve conduction and function, was not significantly affected by MK63 discharge compared with contralateral or sham controls. No significant histological changes were seen at any time point in skeletal muscle or peripheral nerve biopsies although mild skin inflammation was evident.
Conclusions: There was no evidence of acute arrhythmia from MK63 discharges. No clinically significant changes were seen in any of the physiological parameters measured here at any time point. Neuromuscular function was not significantly altered by the MK63 discharge. In this animal model, even lengthy MK63 discharges did not induce muscle or nerve injury as seen using EMG, blood chemistry, or histology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2007.03.049 | DOI Listing |
J Clin Med
December 2024
Department of Postgraduate Nursing, State University of Maringá, Avenida Colombo, 5790-Campus Universitário, Maringá 87020-900, Brazil.
Evidence suggests that older adults who survived COVID-19 were exposed to greater functional dependence in their daily living activities. This study aims to examine the prevalence of functional dependence and associated factors among Brazilian older people with functional dependence 12 months after COVID-19 infection. A cross-sectional study was carried out involving people aged 60 years or older in the state of Paraná, Brazil.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Oral and Maxillofacial Surgery.
Rationale: When gland-preserving treatments are unsuccessful, sialoadenectomy is typically conducted for patients afflicted with submandibular gland diseases. The definitive treatment modality for these individuals is the removal of both the gland and the associated ducts. During surgery, the gland and the majority of the ducts can be excised utilizing the lateral transcervical approach, with residual ducts unlikely to develop pathology.
View Article and Find Full Text PDFACS Nano
January 2025
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
Manganese-based layer-structured transition metal oxides are considered promising cathode materials for future sodium batteries owing to their high energy density potential and industrial feasibility. The grain-related anisotropy and electrode/electrolyte side reactions, however, constrain their energy density and cycling lifespan, particularly at high voltages. Large-sized single-crystal O3-typed Na[NiMnCuTi]O was thus designed and successfully synthesized toward high-voltage and long-lifespan sodium batteries.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:
Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.
After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!