Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2007.09.004 | DOI Listing |
Toxics
January 2025
Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Road dust carries various contaminants and causes urban non-point source pollution in waterbodies through runoff. Road dust samples were collected in each month in two years and then sieved into five particle size fractions. The concentrations of ten heavy metals (As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Fe) in each fraction were measured.
View Article and Find Full Text PDFSci Rep
January 2025
Business School, Sichuan University, 610059, Chengdu, China.
The comprehensive benefit evaluation of LID based on multi-criteria decision-making methods faces technical issues such as the uncertainties and vagueness in hybrid information sources, which can affect the overall evaluation results and ranking of alternatives. This study introduces a multi-indicator fuzzy comprehensive benefit evaluation approach for the selection of LID measures, aiming to provide a robust and holistic framework for evaluating their benefits at the community level. The proposed methodology integrates quantitative environmental and economic indicators with qualitative social benefit indicators, combining the use of the Storm Water Management Model (SWMM) and ArcGIS for scenario-based analysis, and the use of hesitant fuzzy language sets and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for decision-making.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.
As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, China.
Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.
The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!