A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo depletion of endogenous glutathione facilitates trimethyltin-induced neuronal damage in the dentate gyrus of mice by enhancing oxidative stress. | LitMetric

Acute treatment with trimethyltin chloride (TMT) produces neuronal damage in the hippocampal dentate gyrus of mice. We investigated the in vivo role of glutathione in mechanisms associated with TMT-induced neural cell damage in the hippocampus by examining mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHO). In the hippocampus of animals treated with CHO 1h beforehand, a significant increase was seen in the number of single-stranded DNA-positive cells in the dentate gyrus when determined on day 2 after the injection of TMT at a dose of 2.0 mg/kg. Immunoblot analysis revealed that CHO treatment induced a significant increase in the phosphorylation of c-Jun N-terminal kinase in the cytosolic and nuclear fractions obtained from the dentate gyrus at 16 h after the TMT injection. There was also a concomitant increase in the level of phospho-c-Jun in the cytosol at 16 h after the injection. Expectedly, lipid peroxidation was increased by TMT in the hippocampus, and was enhanced by the CHO treatment. Moreover, CHO treatment facilitated behavioral changes induced by TMT. Taken together, our data indicate that TMT-induced neuronal damage is caused by activation of cell death signals induced at least in part by oxidative stress. We conclude that endogenous glutathione protectively regulates neuronal damage induced by TMT by attenuating oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2007.09.003DOI Listing

Publication Analysis

Top Keywords

neuronal damage
16
dentate gyrus
16
endogenous glutathione
12
oxidative stress
12
cho treatment
12
gyrus mice
8
induced tmt
8
tmt
6
damage
5
treatment
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!