Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs.

J Mol Biol

Technische Universität München, Lehrstuhl für Chemie der Biopolymere, Weihenstephaner Berg 3, D-85354 Freising-Weihenstephan, and Munich Center For Integrated Protein Science (CIPS(M)), Germany.

Published: November 2007

Interactions of transmembrane helices play a crucial role in the folding and oligomerisation of integral membrane proteins. In order to uncover novel sequence motifs mediating these interactions, we randomised one face of a transmembrane helix with a set of non-polar or moderately polar amino acids. Those sequences capable of self-interaction upon integration into bacterial inner membranes were selected by means of the ToxR/POSSYCCAT system. A comparison between low/medium-affinity and high-affinity sequences reveals that high-affinity sequences are strongly enriched in phenylalanine residues that are frequently observed at the -3 position of GxxxG motifs, thus yielding FxxGxxxG motifs. Mutation of Phe or GxxxG in selected sequences significantly reduces self-interaction of the transmembrane domains without affecting their efficiency of membrane integration. Conversely, grafting FxxGxxxG onto unrelated transmembrane domains strongly enhances their interaction. Further, we find that FxxGxxxG is significantly over-represented in transmembrane domains of bitopic membrane proteins. The same motif contributes to self-interaction of the vesicular stomatitis virus G protein transmembrane domain. We conclude that Phe stabilises membrane-spanning GxxxG motifs. This is one example of how the role of certain side-chains in helix-helix interfaces is modulated by sequence context.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2007.09.056DOI Listing

Publication Analysis

Top Keywords

transmembrane domains
16
gxxxg motifs
12
membrane proteins
8
high-affinity sequences
8
transmembrane
7
motifs
5
phenylalanine promotes
4
promotes interaction
4
interaction transmembrane
4
domains
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!