A novel interconversion system between less-fluorescent stacked (S) dimer and fluorescent extended (E) dimer of the monoimidazolylbisporphyrinatozinc complex was investigated. The addition of pyridine induces transformation from the S to the E dimer, whereas the addition of acetic acid and subsequent heating reverses the transformation. The interconversion rate is controlled by ligand concentration and thermal treatment. The system can be applied to repeatedly readable molecular memory by highly sensitive fluorescence detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic7010056 | DOI Listing |
Chemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.
As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.
View Article and Find Full Text PDFEvol Anthropol
March 2025
Department of Anthropology, University of California San Diego, La Jolla, California, USA.
Primates rely on memory to navigate both physical and social environments and in humans, loss of memory function leads to devastating consequences. Alzheimer's disease (AD) is a neurodegenerative disease which begins by impacting memory functioning and is ultimately fatal. AD is common across human populations and its prevalence is predicted to rise with increases in the aging population.
View Article and Find Full Text PDFNat Cancer
January 2025
State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
Terminal exhaustion is a critical barrier to antitumor immunity. By integrating and analyzing single-cell RNA-sequencing and single-cell assay for transposase-accessible chromatin with sequencing data, we found that ETS variant 7 (ETV7) is indispensable for determining CD8 T cell fate in tumors. ETV7 introduction drives T cell differentiation from memory to terminal exhaustion, limiting antiviral and antitumor efficacy in male mice.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Chunilal Bhawan, 168, Maniktala Main Rd, Kolkata, West Bengal 700054, India. Electronic address:
Aims: Gut dysbiosis modulates CNS complications and cognitive decline through the gut-brain axis. The study aims to investigate the molecular mechanisms involved in gut dysbiosis-associated cognitive changes and the potential effects of probiotics in high fat-high carbohydrate diet-induced gut dysbiosis-associated neurodegeneration.
Materials And Methods: We used high fat, high-carbohydrate diet (HFHCD) and high-fat diet (HFD) to induce gut dysbiosis-associated neurodegeneration in C57BL/6 mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!