Productive photochemical synthesis of hydrogen peroxide, H(2)O(2), from the H(2)O...O((3)P) van der Waals complex is studied in solid krypton. Experimentally, we achieve the three-step formation of H(2)O(2) from H(2)O and N(2)O precursors frozen in solid krypton. First, 193 nm photolysis of N(2)O yields oxygen atoms in solid krypton. Upon annealing at approximately 25 K, mobile oxygen atoms react with water forming the H(2)O...O complex, where the oxygen atom is in the triplet ground state. Finally, the H(2)O...O complex is converted to H(2)O(2) by irradiation at 300 nm. According to the complete active space self-consistent field modeling, hydrogen peroxide can be formed through the photoexcited H(2)O+-O- charge-transfer state of the H(2)O...O complex, which agrees with the experimental evidence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp075233s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!