How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1-cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048756PMC
http://dx.doi.org/10.1038/sj.emboj.7601886DOI Listing

Publication Analysis

Top Keywords

tumor development
12
somatic cell
8
tumor
5
cell type
4
type specific
4
specific gene
4
gene transfer
4
transfer reveals
4
reveals tumor-promoting
4
tumor-promoting function
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Background: Immunosuppression might increase the risk of skin cancer in organ transplant recipients (OTRs), with azathioprine (AZA), exerting a fundamental role in the carcinogenesis of those tumors. This systematic review and meta-analysis aims to address the risk of developing malignant skin neoplasms in OTRs undergoing immunosuppression with AZA.

Methods: PubMed, Cochrane and Embase were searched for studies with OTRs who have a treatment regimen involving Azathioprine therapy after transplantation and that analyzed the emergence of skin neoplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!