The POT1 (protection of telomeres) protein binds the single-stranded G-rich overhang and is essential for both telomere end protection and telomere length regulation. Telomeric binding of POT1 is enhanced by its interaction with TPP1. In this study, we demonstrate that mouse Tpp1 confers telomere end protection by recruiting Pot1a and Pot1b to telomeres. Knockdown of Tpp1 elicits a p53-dependent growth arrest and an ATM-dependent DNA damage response at telomeres. In contrast to depletion of Trf2, which activates ATM, removal of Pot1a and Pot1b from telomeres initiates an ATR-dependent DNA damage response (DDR). Finally, we show that telomere dysfunction as a result of Tpp1 depletion promotes chromosomal instability and tumorigenesis in the absence of an ATM-dependent DDR. Our results uncover a novel ATR-dependent DDR at telomeres that is normally shielded by POT1 binding to the single-stranded G-overhang. In addition, our results suggest that loss of ATM can cooperate with dysfunctional telomeres to promote cellular transformation and tumor formation in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080807PMC
http://dx.doi.org/10.1038/sj.emboj.7601893DOI Listing

Publication Analysis

Top Keywords

dna damage
12
damage response
12
dysfunctional telomeres
8
telomere protection
8
pot1a pot1b
8
pot1b telomeres
8
telomeres
6
telomeres activate
4
activate atm-atr-dependent
4
atm-atr-dependent dna
4

Similar Publications

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).

View Article and Find Full Text PDF

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Emerging mercury-free ultraviolet (UV) sources, such as krypton chloride excimer (KrCl*) lamps and UV light emitting diodes (UV-LEDs), emit diverse wavelengths with distinct inactivation mechanisms. The combined application has the potential to improve disinfection effectiveness through synergism. In this study, a mini-fluidic photoreaction system equipped with a KrCl* lamp (222 nm) and a strip of UV-LEDs (275 nm) was developed, which could individually/simultaneously deliver accurate UV radiation(s) at 222 nm (0.

View Article and Find Full Text PDF

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.

View Article and Find Full Text PDF

Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution.

Aging (Albany NY)

December 2024

CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!