Why systemic lupus erythematosus primarily affects women is unknown. Recent evidence indicates that human lupus is an epigenetic disease characterized by impaired T cell DNA methylation. Women have two X chromosomes; one is inactivated by mechanisms including DNA methylation. We hypothesized that demethylation of sequences on the inactive X may cause gene overexpression uniquely in women, predisposing them to lupus. We therefore compared expression and methylation of CD40LG, a B cell costimulatory molecule encoded on the X chromosome, in experimentally demethylated T cells from men and women and in men and women with lupus. Controls included TNFSF7, a methylation-sensitive autosomal B cell costimulatory molecule known to be demethylated and overexpressed in lupus. Bisulfite sequencing revealed that CD40LG is unmethylated in men, while women have one methylated and one unmethylated gene. 5-Azacytidine, a DNA methyltransferase inhibitor, demethylated CD40LG and doubled its expression on CD4(+) T cells from women but not men, while increasing TNFSF7 expression equally between sexes. Similar studies demonstrated that CD40LG demethylates in CD4(+) T cells from women with lupus, and that women but not men with lupus overexpress CD40LG on CD4(+) T cells, while both overexpress TNFSF7. These studies demonstrate that regulatory sequences on the inactive X chromosome demethylate in T cells from women with lupus, contributing to CD40LG overexpression uniquely in women. Demethylation of CD40LG and perhaps other genes on the inactive X may contribute to the striking female predilection of this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.179.9.6352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!