Exercise/joint mobilization is therapeutic for inflammatory joint diseases like rheumatoid and osteoarthritis, but the mechanisms underlying its actions remain poorly understood. We report that biomechanical signals at low/physiological magnitudes are potent inhibitors of inflammation induced by diverse proinflammatory activators like IL-1beta, TNF-alpha, and lipopolysaccharides, in fibrochondrocytes. These signals exert their anti-inflammatory effects by inhibiting phosphorylation of TAK1, a critical point where signals generated by IL-1beta, TNF-alpha, and LPS converge to initiate NF-kappaB signaling cascade and proinflammatory gene induction. Additionally, biomechanical signals inhibit multiple steps in the IL-1beta-induced proinflammatory cascade downstream of IkappaB kinase activation to regulate IkappaBalpha and IkappaBbeta degradation and synthesis, and promote IkappaBalpha shuttling to export nuclear NF-kappaB and terminate its transcriptional activity. The findings demonstrate that biomechanical forces are but another important signal that uses NF-kappaB pathway to regulate inflammation by switching the molecular activation of discrete molecules involved in proinflammatory gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950928PMC
http://dx.doi.org/10.4049/jimmunol.179.9.6246DOI Listing

Publication Analysis

Top Keywords

biomechanical signals
12
il-1beta tnf-alpha
8
proinflammatory gene
8
biomechanical
4
signals suppress
4
suppress tak1
4
activation
4
tak1 activation
4
activation inhibit
4
nf-kappab
4

Similar Publications

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis (AIS) is characterized by an asymmetrical formation of the spine and ribcage. Recent work provides evidence of asymmetrical (right versus left side) paraspinal muscle size, composition, and activation amplitude in adolescents with AIS. Each of these factors influences muscle force generation.

View Article and Find Full Text PDF

Effectiveness of Using a Digital Wearable Plantar Pressure Device to Detect Muscle Fatigue: Within-Subject, Repeated Measures Experimental Design.

JMIR Hum Factors

January 2025

Department of Biomedical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Toayuan City, 32023, Taiwan, 886 32564507.

Background: Muscle fatigue, characterized by reduced force generation during repetitive contractions, impacts older adults doing daily activities and athletes during sports activities. While various sensors detect muscle fatigue via muscle activity, biochemical markers, and kinematic parameters, a real-time wearable solution with high usability remains limited. Plantar pressure monitoring detects muscle fatigue through foot loading changes, seamlessly integrating into footwear to improve the usability and compliance for home-based monitoring.

View Article and Find Full Text PDF

Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!