Alpha- and flaviviruses contain class II fusion proteins, which form ion-permeable pores in the target membrane during virus entry. The pores generated during entry of the alphavirus Semliki Forest virus have been shown previously to be blocked by lanthanide ions. Here, analyses of the influence of rare earth ions on the entry of the flaviviruses West Nile virus and Uganda S virus revealed an unexpected effect of lanthanide ions. The results showed that a 30 s treatment of cells with an appropriate lanthanide ion changed the cellular chemistry into a state in which the cells no longer supported the multiplication of flaviviruses. This change occurred in cells treated before, during or after infection, did not inhibit multiplication of Semliki Forest virus and did not interfere with host-cell multiplication. The change was generated in vertebrate and insect cells, and was elicited in the presence of actinomycin D. In vertebrate cells, the change was elicited specifically by La(3+), Ce(3+), Pr(3+) and Nd(3+). In insect cells, additional lanthanide ions had this activity. Further analyses showed that lanthanide ion treatment blocked the ability of the host cell to support the replication of flavivirus RNA. These results open two areas of research: the study of molecular alterations induced by lanthanide ion treatment in uninfected cells and the analysis of the resulting modifications of the flavivirus RNA replicase complex. The findings possibly open the way for the development of a general chemotherapy against flavivirus diseases such as Dengue fever, Japanese encephalitis, West Nile fever and yellow fever.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884975 | PMC |
http://dx.doi.org/10.1099/vir.0.83146-0 | DOI Listing |
Mini Rev Med Chem
January 2025
Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italia.
Luminescent Lanthanide (III) (Ln(III)) bioprobes (LLBs) have been extensively used in the last two decades as intracellular molecular probes in bio-imaging for the efficient revelation of analytes, to signal intracellular events (enzymes/protein activity, antigen-antibody interaction), target specific organelles, and determine parameters of particular biophysical interest, to gain important insights on pathologies or diseases. The choice of using a luminescent Ln(III) coordination compound with respect to a common organic fluorophore is intimately connected to how their photophysical sensitization (antenna effect) can be finely tuned and especially triggered to respond (even quantitatively) to a certain biophysical event, condition or analyte. While there are other reviews focused on how to design chromophoric ligands for an efficient sensitization of Ln(III) ions, both in the visible and NIR region, this review is application-driven: it is a small collection of particularly interesting examples where the LLB's emissive information is acquired by imaging the emission intensity and/or the fluorescence lifetime (fluorescence lifetime imaging microscopy, FLIM).
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
The lanthanide contraction is a widely known phenomenon in which the ionic radii of the Ln ions decrease across the series from La to Lu. As a result, the distance (Ln-Y), where Y is a ligand donor atom, decreases across the series. As shown previously, the decrease normally has a linear dependence on the number of 4f Ln electrons, , and the net change, Δ', is between 0.
View Article and Find Full Text PDFDalton Trans
January 2025
Center for Research, Innovation, Development, and Applications (CRIDA), Jaiotec Labs (OPC) Private Limited, Amaravati, AP, 522503, India.
The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, , photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd) and dysprosium (Dy) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!