Retinoid X receptors (RXRalpha, -beta, and -gamma) occupy a central position in the nuclear receptor superfamily, because they form heterodimers with many other family members and hence are involved in the control of a variety of (patho)physiologic processes. Selective RXR ligands, referred to as rexinoids, are already used or are being developed for cancer therapy and have promise for the treatment of metabolic diseases. However, important side effects remain associated with existing rexinoids. Here we describe the rational design and functional characterization of a spectrum of RXR modulators ranging from partial to pure antagonists and demonstrate their utility as tools to probe the implication of RXRs in cell biological phenomena. One of these ligands renders RXR activity particularly sensitive to coactivator levels and has the potential to act as a cell-specific RXR modulator. A combination of crystallographic and fluorescence anisotropy studies reveals the molecular details accounting for the agonist-to-antagonist transition and provides direct experimental evidence for a correlation between the pharmacological activity of a ligand and its impact on the structural dynamics of the activation helix H12. Using RXR and its cognate ligands as a model system, our correlative analysis of 3D structures and dynamic data provides an original view on ligand actions and enables the establishment of mechanistic concepts, which will aid in the development of selective nuclear receptor modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077255PMC
http://dx.doi.org/10.1073/pnas.0705356104DOI Listing

Publication Analysis

Top Keywords

structural dynamics
8
nuclear receptor
8
rxr
5
modulators structural
4
dynamics retinoid
4
receptor
4
retinoid receptor
4
receptor reveal
4
reveal receptor
4
receptor function
4

Similar Publications

Predicting the evolution of ascending aortic aneurysm (AscAA) growth is a challenge, complicated by the intricate interplay of aortic geometry, tissue behavior, and blood flow dynamics. We investigate a flow-structural growth and remodeling (FSG) model based on the homogenized constrained mixture theory to simulate realistic AscAA growth evolution. Our approach involves initiating a finite element model with an initial elastin insult, driven by the distribution of Time-Averaged Wall Shear Stress (TAWSS) derived from computational fluid dynamics simulations.

View Article and Find Full Text PDF

The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.

View Article and Find Full Text PDF

Semiconductor-metal hybrid nanoparticles (HNPs) are promising materials for photocatalytic applications, such as water splitting for green hydrogen generation. While most studies have focused on Cd containing HNPs, the realization of actual applications will require environmentally compatible systems. Using heavy-metal free ZnSe-Au HNPs as a model, we investigate the dependence of their functionality and efficiency on the cocatalyst metal domain characteristics ranging from the single-atom catalyst (SAC) regime to metal-tipped systems.

View Article and Find Full Text PDF

Multi-epitope vaccines: a promising strategy against viral diseases in swine.

Front Cell Infect Microbiol

December 2024

School of Basic Medical Sciences, Binzhou Medical University, Yantai, China.

Viral infections in swine, such as African swine fever (ASF), porcine reproductive and respiratory syndrome (PRRS), and foot-and-mouth disease (FMD), have a significant impact on the swine industry. Despite the significant progress in the recent efforts to develop effective vaccines against viral diseases in swine, the search for new protective vaccination strategy remains a challenge. The antigenic epitope, acting as a fundamental unit, can initiate either a cellular or humoral immune response.

View Article and Find Full Text PDF

Background: Nipah virus is a pathogenic virus of ruinous zoonotic potential with inflated rate of mortality in humans.

Methods: Considering the emerging threat of this pandemic virus, the present investigation amid to design vaccine by using the bioinformatics tools such as host and virus codon usage analysis, CD8+ peptide prediction, immunogenicity/allergenicity/toxicity, MHC-I allele binding prediction and subsequent population coverage and MHC-I-peptide docking analysis.

Results: In this study (conducted in 2022 at School of Biotechnology, Katra, India), a set of 11 peptides of the structural proteins of Nipah Virus were predicted and recognized by the set of MHC-I alleles that are expressed in 92% of the global human population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!