Delivery of antisense oligonucleotides, AON, presents many of the same challenges as delivery of any nucleic acid: charge, stability, cell uptake, endolysosomal escape, and entry into the nucleus. Here we demonstrate efficient delivery of AON after loading into biodegradable polymer vesicles or 'polymersomes'. We focus on AON delivery to muscle cells in vitro and in vivo because of the emergence of AON in therapeutic strategies directed at muscular dystrophies. To first clarify uptake kinetics without the complications of typical multi-layered myotube cultures, we use micro-patterned C2C12 cells and show efficient uptake of AON-polymersomes. The biodegradable polymersomes break down and foster AON escape with the binding of fluorescent-AON into the nuclear bodies. Intramuscular injections of the polymersome-AON into the hind limbs of mdx-dystrophic mice show more efficient nuclear uptake than AON alone and also lead to dystrophin expression in the mdx mice. In sum, these neutral, degradable carriers of AON show promise in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2006.259861DOI Listing

Publication Analysis

Top Keywords

efficient nuclear
8
aon
7
delivery
5
efficient
4
nuclear delivery
4
delivery nuclear
4
nuclear body
4
body localization
4
localization antisense
4
antisense oligo-nucleotides
4

Similar Publications

Facile Formulation of a Resveratrol-Mediated Multibond Network Hydrogel with Efficient Sustainable Antibacterial, Reactive Oxygen Species Scavenging, Pro-Angiogenesis, and Immunomodulation Activities for Accelerating Infected Wound Healing.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China.

The management of chronic infected wounds remains a significant clinical challenge, largely due to the deficiency of optimal wound dressings with adequate mechanical strength, appropriate adhesiveness, and efficient sustainable antibacterial, reactive oxygen species (ROS) scavenging, pro-angiogenesis, and immunomodulation properties. To address such a dilemma, we employed a simple and facile strategy to utilize resveratrol (RSV) as a functional component to mediate hydrogel gelation in this study. The structure of this obtained hydrogel was supported by a multibond network, which not only endowed the resultant product with superior mechanical strength and moderate adhesiveness but also effectively prolonged the bioavailability of RSV.

View Article and Find Full Text PDF

Effectiveness of Data-Driven Gating FDG PET/CT for Abdominal Region.

J Nucl Med Technol

January 2025

Department of Nuclear Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.

This study aimed to validate the effectiveness of MotionFree (MF) in the abdominal region using 2 different PET/CT scanners to determine how to use MF efficiently. All 198 patients underwent respiratory-gated F-FDG PET/CT with MF. Imaging was performed using Discovery MI (DMI) and Discovery IQ (DIQ) PET/CT scanners, and all data were divided into 2 groups in each category (abdominal: upper and lower abdomen, lesion size, <20 mm and ≥20 mm; scanner group: DMI and DIQ).

View Article and Find Full Text PDF

Solid tumors (particularly the desmoplastic ones) usually harbor insurmountable mechanical barriers and formidable immunosuppressive tumor microenvironment (TME), which severely restricted nanomedicine-penetration and vastly crippled outcomes of numerous therapies. To overcome these barriers, a versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy was developed here to simultaneously modulate tumor physical barriers and remodel TME for synergistically enhancing anticancer efficiency. Dexamethasone (DMS) and cis-aconityl-doxorubicin (CAD) were co-hitchhiked into phenylboronic acid functionalized polyethylenimine (PEI-PBA) carrier, and further in situ shielded by aldehyde-modified polyethylene glycol (PEG) to form CAD/DMS@PEG/PEI-PBA (CD@PB) nanoparticles (NPs).

View Article and Find Full Text PDF

The three-dimensional radiation field is an important database reflecting the radioactivity distribution in a nuclear facility. It is of great significance to accurately and quickly grasp the radiation dose field distribution to implement radiation protection. Presently, majority of radiation field reconstruction algorithms concentrate on two-dimensional reconstruction and can only measure on a regular grid.

View Article and Find Full Text PDF

Lauryl-NrTP6 lipopeptide self-assembled nanorods for nuclear-targeted delivery of doxorubicin.

Nanoscale

January 2025

Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.

Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!