A biorobotic fin for autonomous undersea vehicles (AUVs) was developed based on studies of the anatomy, kinematics, and hydrodynamics of the bluegill sunfish pectoral fin. The biorobotic fin was able to produce many of the complex fin motions used by the sunfish during steady swimming and was used to investigate mechanisms of thrust production and control. This biorobotic fin is an excellent experimental tool and is an important first step towards developing propulsive devices that give AUVs maneuvering characteristics that match and exceed those of highly maneuverable fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.260834 | DOI Listing |
Bioinspir Biomim
May 2024
Soft Kinetic Group, Engineering Sciences Department, Empa, 8600 Zuerich, Switzerland.
Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to reconstruct their locomotion through fossil analysis. Despite advancements, little is known about how extinct megafauna, such as the Ichthyosauria one of the most successful lineages of marine reptiles, utilized their varied morphologies for swimming.
View Article and Find Full Text PDFComput Intell Neurosci
March 2022
National Key Laboratory of Digital Control and System Engineering (DCSELab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam.
Biorobotic fishes have a huge impact on the development of underwater devices due to both fast swimming speed and great maneuverability. In this paper, an enhanced CPG model is investigated for locomotion control of an elongated undulating fin robot inspired by black knife fish. The proposed CPG network includes sixteen coupled Hopf oscillators for gait generation to mimic fishlike swimming.
View Article and Find Full Text PDFFront Robot AI
May 2021
BioRobotics and Medical Technologies Laboratory, School of Engineering, University of Lincoln, Lincoln, United Kingdom.
Soft robotic grippers are increasingly desired in applications that involve grasping of complex and deformable objects. However, their flexible nature and non-linear dynamics makes the modelling and control difficult. Numerical techniques such as Finite Element Analysis (FEA) present an accurate way of modelling complex deformations.
View Article and Find Full Text PDFBiomimetics (Basel)
March 2019
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Fish use coordinated motions of multiple fins and their body to swim and maneuver underwater with more agility than contemporary unmanned underwater vehicles (UUVs). The location, utilization and kinematics of fins vary for different locomotory tasks and fish species. The relative position and timing (phase) of fins affects how the downstream fins interact with the wake shed by the upstream fins and body, and change the magnitude and temporal profile of the net force vector.
View Article and Find Full Text PDFSoft Robot
August 2018
2 The Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts.
Although linear accelerations are an important common component of the diversity of fish locomotor behaviors, acceleration is one of the least-understood aspects of propulsion. Analysis of acceleration behavior in fishes with both spiny and soft-rayed median fins demonstrates that fin area is actively modulated when fish accelerate. We implemented an undulatory biomimetic robotic fish model with median fins manufactured using multimaterial three-dimensional printing-a spiny-rayed dorsal fin, soft-rayed dorsal/anal fins, and a caudal fin-whose stiffnesses span three orders of magnitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!