Computational modeling and simulation can provide important insights into the electrical and electrophysiological properties of cells, tissues, and organs. Commonly, the modeling is based on Maxwell's and Poisson's equations for electromagnetic and electric fields, respectively, and numerical techniques are applied for field calculation such as the finite element and finite differences methods. Focus of this work are finite element methods, which are based on an element-wise discretization of the spatial domain. These methods can be classified on the element's geometry, e.g. triangles, tetrahedrons and hexahedrons, and the underlying interpolation functions, e.g. polynomials of various order. Aim of this work is to describe finite element-based approaches and their application to extend the problem-solving environment SCIRun/BioPSE. Finite elements of various types were integrated and methods for interpolation and integration were implemented. General methods for creation of finite element system matrices and boundary conditions were incorporated. The extension provides flexible means for geometric modeling, physical simulation, and visualization with particular application in solving bioelectric field problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.259450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!