A method for estimating pulse wave velocity (PWV) using circulatory waveform signals derived from multiple photoplethysmograph (PPG) sensors is described. The method employs two wearable in-line PPG sensors placed at a known distance from one another at the ulnar and digital artery. A technique for calibrating the measured pulse wave velocity to arterial blood pressure using hydrostatic pressure variation is presented. Additionally, a framework is described for estimating local arterial dynamics using PPG waveforms and multi-channel blind system ID. Initial results implementing the method on data derived from a human subject at different arterial pressures is presented. Results show that the method is capable of measuring the changes in arterial PWV that result from fluctuations in mean arterial pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2006.260590DOI Listing

Publication Analysis

Top Keywords

ppg sensors
12
pulse wave
12
wave velocity
12
blood pressure
8
multi-channel blind
8
local arterial
8
arterial dynamics
8
arterial
6
adaptive blood
4
pressure
4

Similar Publications

Background: Hypertension is a leading cause of cardiovascular disease and premature death worldwide, and it puts a heavy burden on the healthcare system. Therefore, it is very important to detect and evaluate hypertension and related cardiovascular events to enable early prevention, detection, and management. Hypertension can be detected in a timely manner with cardiac signals, such as through an electrocardiogram (ECG) and photoplethysmogram (PPG) , which can be observed via wearable sensors.

View Article and Find Full Text PDF

Developing a Health Support System to Promote Care for the Elderly.

Sensors (Basel)

January 2025

Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary.

In light of the demographic shift towards an aging population, there is an increasing prevalence of dementia among the elderly. The negative impact on mental health is preventing individuals from taking proper care of themselves. For individuals requiring hospital care, those receiving home care, or as a precaution for a specific individual, it is advantageous to utilize monitoring equipment to track their biological parameters on an ongoing basis.

View Article and Find Full Text PDF

According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

Non-Intrusive Monitoring of Vital Signs in the Lower Limbs Using Optical Sensors.

Sensors (Basel)

January 2025

Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.

Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!