Hemodynamics are thought to play an important role in the creation, thrombosis, recanalization, regrowth and re-bleeding of cerebral aneurysms treated by endovascular means. However, their exact role and interaction is unclear and warrants further study. Towards a systematic classification of the hemodynamics in intracranial aneurysms, we investigated the dependence of the values of the magnitude of the wall shear stresses in the vicinity of the aneurysm on varying inflow conditions in three basilar tip aneurysms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2006.259689DOI Listing

Publication Analysis

Top Keywords

wall shear
8
basilar aneurysms
8
aneurysms investigated
8
shear stress
4
stress variations
4
variations basilar
4
aneurysms
4
investigated computational
4
computational fluid
4
fluid dynamics
4

Similar Publications

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Spatiotemporal analysis of the effects of exercise on the hemodynamics of the aorta in hypertensive rats using fluid-structure interaction simulation.

J Transl Int Med

February 2024

Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.

Background And Objective: Hemodynamic changes that lead to increased blood pressure represent the main drivers of organ damage in hypertension. Prolonged increases to blood pressure can lead to vascular remodeling, which also affects vascular hemodynamics during the pathogenesis of hypertension. Exercise is beneficial for relieving hypertension, however the mechanistic link between exercise training and how it influences hemodynamics in the context of hypertension is not well understood.

View Article and Find Full Text PDF

Atherogenesis is prone in medium and large-sized vessels, such as the aorta and coronary arteries, where hemodynamic stress is critical. Low and oscillatory wall shear stress contributes significantly to endothelial dysfunction and inflammation. Murray's law minimizes energy expenditure in vascular networks and applies to small arteries.

View Article and Find Full Text PDF

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms.

Cardiovasc Eng Technol

January 2025

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.

Purpose: The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!