This paper presents a new method of amplifying the small reaction force in the minimally invasive surgical system according to the surgeon's intended action. For this purpose, the analysis of the laparoscopic cholecystectomy procedure is first studied. The procedure is broken down and analyzed for the necessary forceps actions based on the degrees of freedom of the surgical tool and the task to be performed. For this system, there are seven necessary forceps actions. Then the concept of the force feedback augmentation has been proposed. It amplifies the small reaction force in specific directions according to the surgeon's intended action. Each action determines how the reaction force should be amplified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2006.259933 | DOI Listing |
J Sci Med Sport
January 2025
Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:
Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.
Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.
J Environ Manage
January 2025
Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China. Electronic address:
Traditionally, abiotic factors such as pH, temperature, and initial Cr(VI) concentration have been undoubtedly recognized as the external driving forces that dramatically affect the microbial-mediated remediation of Cr(VI) pollutants. However, concentrating on whether and how the biological behaviors and metabolic activities drive the microbial-mediated Cr(VI) detoxification is a study-worthy but little-known issue. In this study, Leucobacter chromiireducens CD49 isolated from heavy-metal-contaminated soil was identified to tolerate 8000.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan.
Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of P.E. and Sports, Beijing Normal University, Beijing 100875, China.
Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.
Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.
Sensors (Basel)
January 2025
Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Mexico City 14389, Mexico.
Axillary crutches assist people with lower limb injuries but can lead to upper limb strain with extended use. Spring-loaded crutches offer a potential solution, yet they are rarely tested in clinical settings. This study developed spring-loaded crutches with an integrated force-measuring system to analyze gait dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!